分析 (1)已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,即f(1)=-1,f′(1)=0,所以先求導(dǎo)函數(shù),再代入列方程組,即可解得a、b的值;
(2)分別解不等式f′(x)>0和f′(x)<0,即可得函數(shù)f(x)的單調(diào)增區(qū)間與單調(diào)遞減區(qū)間;
(3)求導(dǎo)數(shù),求出切線的斜率,即可求x=2處的切線方程.
解答 解:(1)∵f′(x)=3x2-6ax+2b,函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,
∴f(1)=-1,f′(1)=0
∴1-3a+2b=-1,3-6a+2b=0
解得a=$\frac{1}{3}$,b=-$\frac{1}{2}$,
∴f(x)=x3-x2-x;(4分)
(2)∵f′(x)=3x2-2x-1
∴由f′(x)=3x2-2x-1>0得x>1或x<-$\frac{1}{3}$,
即$({-∞,-\frac{1}{3}})與({1,+∞})$為函數(shù)f(x)單調(diào)遞增區(qū)間 (8分)
由f′(x)=3x2-2x-1<0得-$\frac{1}{3}$<x<1,
即$({-\frac{1}{3},1})$為函數(shù)f(x)單調(diào)遞減區(qū)間 (10分)
(3)k=f'(2)=322-2•2-1=7,f(2)=23-22-2=2,即x=2處的切線方程為y-2=7(x-2),(13分)
即切線方程為:y-7x+12=0(14分)
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)在求函數(shù)極值中的應(yīng)用,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查導(dǎo)數(shù)的幾何意義,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a2c>b2c(c∈R) | B. | $\frac{a}>1$ | C. | lg(a-b)>0 | D. | ${({\frac{1}{2}})^a}>{({\frac{1}{2}})^b}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com