17.某科研小組對(duì)一種可冷凍食物保質(zhì)期研究得出,保存溫度x與保質(zhì)期天數(shù)y的有關(guān)數(shù)據(jù)如表:
溫度/℃-2-3-5-6
保質(zhì)期/天數(shù)20242731
根據(jù)以上數(shù)據(jù),用線性回歸的方法,求得保質(zhì)期天數(shù)y與保存溫度x之間線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$的系數(shù)$\widehat$=-2.5,則預(yù)測(cè)溫度為-7℃時(shí)該食物保質(zhì)期為( 。
A.32天B.33天C.34天D.35天

分析 求出樣本平均數(shù),代入解得a,即可得到結(jié)論.

解答 解:∵數(shù)據(jù)(x,y)分別為:(-2,20),(-3,24),(-5,27),(-6,31),
∴平均數(shù)$\overline{x}$=$\frac{1}{4}$(-2-3-5-6)=-4,$\overline{y}$=$\frac{1}{4}$(20+24+27+31)=25.5,即樣本中心為(-4,25.5),
∵線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$的系數(shù)b=-2.5,
∴$\widehat{y}$=-2.5x+$\widehat{a}$,
∵回歸方程過(guò)點(diǎn)(-4,25.5),
代入解得$\widehat{a}$=15.5,
則回歸方程為$\widehat{y}$=-2.5x+15.5,
當(dāng)x=-7時(shí),$\widehat{y}$=-2.5×(-7)+15.5=33,
故選:B.

點(diǎn)評(píng) 本題主要考查線性回歸方程的求解和應(yīng)用,根據(jù)回歸方程過(guò)樣本數(shù)據(jù)中心($\overline{x}$,$\overline{y}$)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率
是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.
(I)求X的分布列和數(shù)學(xué)期望E(X);
(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說(shuō)明理由.
原則:設(shè)a表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若|a-E(X)≥$\sqrt{\frac{D(X)}{5}}$,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:D(X)=$\sum_{i=1}^{n}$(xi-E(X))2pi

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.中央電視臺(tái)為了解一檔詩(shī)歌類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如莖葉圖所示:其中一個(gè)數(shù)字被污損
(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率;
(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)詩(shī)歌知識(shí)的學(xué)習(xí)積累熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)詩(shī)歌知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對(duì)照表(如表所示):
年齡x(歲)20304050
周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間y(小時(shí))2.5344.5
由表中數(shù)據(jù),試求線性回歸方程$\hat y=\hat bx+\hat a$,并預(yù)測(cè)年齡在60歲的觀眾周均學(xué)習(xí)詩(shī)歌知識(shí)的時(shí)間.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=i}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.根據(jù)回歸系數(shù)b和回歸截距$\widehat{a}$的計(jì)算公式可知:若y與x之間的一組數(shù)據(jù)為:
x1M345
y356N9
若擬合這5組數(shù)據(jù)的回歸直線恒經(jīng)過(guò)的點(diǎn)是(4,6),則表中的M的值為7,N的值為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)滿足f(x+2)-f(x)=0,且在[-1,0]上單調(diào)遞增,設(shè)a=f(log32),b=f(log${\;}_{\frac{1}{27}}$2),c=f($\frac{19}{12}$),則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.通過(guò)市場(chǎng)調(diào)查,得到某產(chǎn)品的資金投入x(萬(wàn)元)與獲得的利潤(rùn)y(萬(wàn)元)的數(shù)據(jù),如表所示:
資金投入x23456
利潤(rùn)y23569
(Ⅰ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程${\;}_{y}^{∧}$=bx+a;
(Ⅱ)現(xiàn)投入資金10(萬(wàn)元),求估計(jì)獲得的利潤(rùn)為多少萬(wàn)元.
參考公式:回歸直線的方程是:${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,其中b=$\frac{{{\sum_{i=1}^{n}x}_{i}y}_{i}-{{n}_{x}^{-}}_{y}^{-}}{{{\sum_{i=1}^{n}x}_{i}^{2}-{n}_{x}^{-}}^{2}}$,${\;}_{a}^{∧}$=${\;}_{y}^{-}$-${\;}_^{∧}$${\;}_{x}^{-}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*). 
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:${a_n}=\frac{b_1}{2+1}+\frac{b_2}{{{2^2}+1}}+\frac{b_3}{{{2^3}+1}}+…+\frac{b_n}{{{2^n}+1}}$,求數(shù)列{bn}的通項(xiàng)公式;
(3)令${c_n}=\frac{{{a_n}{b_n}}}{4}$(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知$\overrightarrow a=(-3,2,5)$,$\overrightarrow b=(1,x,-1)$,且$\overrightarrow a•\overrightarrow b=4$,則x的值是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,為了測(cè)量河對(duì)岸A,B兩點(diǎn)之間的距離.觀察者找到了一個(gè)點(diǎn)C,從C可以觀察到點(diǎn)A,B;找到了一個(gè)點(diǎn)D,從D可以觀察到點(diǎn)A,C;找到了一個(gè)點(diǎn)E,從E可以觀察到點(diǎn)B,C.并測(cè)量得到圖中一些數(shù)據(jù),其中$CD=2\sqrt{3}$,CE=4,∠ACB=60°,∠ACD=∠BCE=90°,∠ADC=60°,∠BEC=45°,則AB=2$\sqrt{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案