5.根據(jù)回歸系數(shù)b和回歸截距$\widehat{a}$的計(jì)算公式可知:若y與x之間的一組數(shù)據(jù)為:
x1M345
y356N9
若擬合這5組數(shù)據(jù)的回歸直線恒經(jīng)過(guò)的點(diǎn)是(4,6),則表中的M的值為7,N的值為7.

分析 根據(jù)回歸直線恒過(guò)樣本中心點(diǎn),求出表中M、N的值.

解答 解:根據(jù)題意,回歸直線恒經(jīng)過(guò)的點(diǎn)是(4,6),
∴$\overline{x}$=$\frac{1}{5}$×(1+M+3+4+5)=4,解得M=7;
$\overline{y}$=$\frac{1}{5}$×(3+5+6+N+9)=6,解得N=7;
∴表中的M的值為7,N的值為7.
故答案為:7,7.

點(diǎn)評(píng) 本題考查了線性回歸方程恒過(guò)樣本中心點(diǎn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若直線y=kx+2與直線y=2x-1互相平行,則實(shí)數(shù)k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算8${\;}^{-\frac{2}{3}}$+2lg2-lg$\frac{1}{25}$的值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若${(x+\frac{1}{2x})^n}$二項(xiàng)展開(kāi)式中的前三項(xiàng)的系數(shù)成等差數(shù)列,則常數(shù)項(xiàng)為$\frac{35}{8}$.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某火鍋店為了解氣溫對(duì)營(yíng)業(yè)額的影響,隨機(jī)記錄了該店1月份中5天的日營(yíng)業(yè)額y(單位:千元)與該地當(dāng)日最低氣溫x(單位:℃)的數(shù)據(jù),如表:
x289115
y1288710
(1)求y關(guān)于x的回歸方程$\hat y=\hat bx+\hat a$;
(2)判定y與x之間是正相關(guān)還是負(fù)相關(guān);若該地1月份某天的最低氣溫為6℃,用所求回歸方程預(yù)測(cè)該店當(dāng)日的營(yíng)業(yè)額.
(附:回歸方程$\hat y=\hat bx+\hat a$中,$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某科研小組對(duì)一種可冷凍食物保質(zhì)期研究得出,保存溫度x與保質(zhì)期天數(shù)y的有關(guān)數(shù)據(jù)如表:
溫度/℃-2-3-5-6
保質(zhì)期/天數(shù)20242731
根據(jù)以上數(shù)據(jù),用線性回歸的方法,求得保質(zhì)期天數(shù)y與保存溫度x之間線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$的系數(shù)$\widehat$=-2.5,則預(yù)測(cè)溫度為-7℃時(shí)該食物保質(zhì)期為( 。
A.32天B.33天C.34天D.35天

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)函數(shù)$f(x)=\frac{1}{2}(x-2a)+\frac{lnx}{x}$(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)曲線y=xf(x) 是否存在經(jīng)過(guò)原點(diǎn)的切線,若存在,求出該切線方程,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x2+8.
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)的極大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案