如圖所示,正方體ABCDA1B1C1D1的棱長為1,線段B1D1上有兩個動點EF,EF=,則下列結(jié)論中錯誤的是(  )

(A)AC⊥BE

(B)EF∥平面ABCD

(C)三棱錐ABEF的體積為定值

(D)△AEF的面積與△BEF的面積相等

 

【答案】

D

【解析】∵AC⊥平面BB1D1D,

BE?平面BB1D1D,∴AC⊥BE,故選項A正確.

∵B1D1平面ABCD,

EF在直線B1D1上運動,

EF∥平面ABCD.故選項B正確.

選項C中由于點B到直線EF的距離是定值,△BEF的面積為定值,又點A到平面BEF的距離為定值,不變.故選項C正確.由于點AB1D1的距離與點BB1D1的距離不相等,因此△AEF△BEF的面積不相等,故選項D錯誤.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在正方體ABCD-A1B1C1D1中,其邊長為2,E、F分別是AD,A1B1的中點,G、H是BB1,BC的兩個動點,
(1)若直線FG與EH相交于點P,求證:P∈AB
(2)在(1)的條件下,若G是BB1,的中點,求GH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知點P是正方體ABCD-A1B1C1D1的棱A1D1上的一個動點,設(shè)異面直線AB與CP所成的角為α,則cosα的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在正方體ABCD-A1B1C1D1中,AB=2,M、N分別是AB、CC1的中點,三角形MB1P的頂點P在棱C1B1上運動,給出下列結(jié)論:
①異面直線B1M與DC所成的角為π-arctan2;
②平面MB1P⊥平面ND1A;
③點A1到平面MB1P的距離等于
4
5
5

④三角形MB1P在平面ABCD內(nèi)的射影面積為定值.
其中正確的有
 
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:必修二訓(xùn)練數(shù)學(xué)北師版 北師版 題型:044

已知如圖所示正方體ABCD-A1B1C1D1,E、F、G、H分別為AB、AD、C1B1、C1D1的中點,試判斷下列直線是否平行.

(1)AD1與BC1

(2)EF與GH;

(3)DE與HB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練4練習(xí)卷(解析版) 題型:填空題

如圖所示,正方體ABCDA1B1C1D1,AB=2,EAD的中點,FCD.EF∥平面AB1C,則線段EF的長度等于   . 

 

 

查看答案和解析>>

同步練習(xí)冊答案