12.函數(shù)y=ex-x在x=0處的切線的斜率為( 。
A.0B.1C.2D.e

分析 求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義,將x=0代入計(jì)算即可得到所求值.

解答 解:函數(shù)y=ex-x的導(dǎo)數(shù)為y′=ex-1,
由導(dǎo)數(shù)的幾何意義,可得:
在x=0處的切線的斜率為e0-1=1-1=0.
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的S值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)變量x,y滿足$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,則x+2y的最大值為(  )
A.-2B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2x3+ax2+b在點(diǎn)M(1,3)處的切線與直線x-6y-3=0垂直.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,Sn=2Sn-1+n-2(n≥2),則a2017等于( 。
A.22016-1B.22016+1C.22017-1D.22017+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線l1:x-2y+2=0與l2:2x-y+4=0交于點(diǎn)A.
(1)求過(guò)點(diǎn)A且與l1垂直的直線l3的方程;
(2)求點(diǎn)P(2,2)到直線l3的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合S={x|x>-2},T={x|x2+3x-4≤0},則(∁RS)∪T=( 。
A.[-4,-2]B.(-∞,1]C.[1,+∞)D.(-2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=alnx+(x-c)|x-c|,a<0,c>0
(Ⅰ)當(dāng)$a=-\frac{3}{4},c=\frac{1}{4}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1,f(x1)),Q(x2,f(x2))兩處的切線分別為l1,l2.若${x_1}=\sqrt{-\frac{a}{2}},{x_2}=c$,且l1⊥l2,求實(shí)數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)z=1-i(i是虛數(shù)單位),則在復(fù)平面內(nèi)z2+$\frac{2}{z}$對(duì)應(yīng)的點(diǎn)位于第四象限.

查看答案和解析>>

同步練習(xí)冊(cè)答案