【題目】已知點(diǎn)A(-1,2),B(2,8)及,求點(diǎn)C,D和

【答案】 見解析.

【解析】試題分析:

設(shè)點(diǎn)C(x1y1),D(x2y2),分別求得的坐標(biāo)表示,然后結(jié)合向量的坐標(biāo)運(yùn)算得到方程組,求解方程組可得點(diǎn)C,D的坐標(biāo)分別為(0,4)(-2,0),則=(-2,-4).

試題解析:

設(shè)點(diǎn)C(x1,y1),D(x2,y2),由題意可得=(x1+1,y1-2),=(3,6),=(-1-x2,2-y2),=(-3,-6),

因?yàn)?/span>,=-,所以(x1+1,y1-2)= (3,6)=(1,2),

(-1-x2,2-y2)=- (-3,-6)=(1,2),

則有

解得

所以點(diǎn)C,D的坐標(biāo)分別為(0,4)(-2,0),所以=(-2,-4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2ln(x+2)﹣(x+1)2 , g(x)=k(x+1).
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)k=2時(shí),求證:對于x>﹣1,f(x)<g(x)恒成立;
(3)若存在x0>﹣1,使得當(dāng)x∈(﹣1,x0)時(shí),恒有f(x)>g(x)成立,試求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第 個(gè)圖形包含 個(gè)小正方形.

(Ⅰ)求出
(Ⅱ)利用合情推理的“歸納推理思想”歸納出 的關(guān)系式,并根據(jù)你得到的關(guān)系式求 的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=(x﹣a)|x﹣a|﹣x|x|+2a+1(a<0,)若存在x0∈[﹣1,1],使f(x0)≤0,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列 的前 項(xiàng)和為 ,且滿足 ,求數(shù)列 的通項(xiàng)公式.勤于思考的小紅設(shè)計(jì)了下面兩種解題思路,請你選擇其中一種并將其補(bǔ)充完整.
思路1:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出 ,
猜想: .
然后用數(shù)學(xué)歸納法證明.證明過程如下:
①當(dāng) 時(shí), , 猜想成立
②假設(shè) N*)時(shí),猜想成立,即
那么,當(dāng) 時(shí),由已知 ,得
,兩式相減并化簡,得 (用含 的代數(shù)式表示).
所以,當(dāng) 時(shí),猜想也成立.
根據(jù)①和②,可知猜想對任何 N*都成立.
思路2:先設(shè) 的值為1,根據(jù)已知條件,計(jì)算出
由已知 ,寫出 的關(guān)系式:
兩式相減,得 的遞推關(guān)系式:
整理:
發(fā)現(xiàn):數(shù)列 是首項(xiàng)為 , 公比為的等比數(shù)列.
得出:數(shù)列 的通項(xiàng)公式 , 進(jìn)而得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率π,劉徽稱這個(gè)方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”下圖是根據(jù)劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖.若運(yùn)行該程序,則輸出的n的值為:(參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)(
A.48
B.36
C.30
D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對大學(xué)生畢業(yè)后自主創(chuàng)業(yè)人員給予小額貸款補(bǔ)貼,貸款期限分為6個(gè)月、12個(gè)月、18個(gè)月、24個(gè)月、36個(gè)月五種,對于這五種期限的貸款政府分別補(bǔ)貼200元、300元、300元、400元、400元,從2016年享受此項(xiàng)政策的自主創(chuàng)業(yè)人員中抽取了100人進(jìn)行調(diào)查統(tǒng)計(jì),選取貸款期限的頻數(shù)如表:

貸款期限

6個(gè)月

12個(gè)月

18個(gè)月

24個(gè)月

36個(gè)月

頻數(shù)

20

40

20

10

10

以上表中各種貸款期限的頻數(shù)作為2017年自主創(chuàng)業(yè)人員選擇各種貸款期限的概率.
(Ⅰ)某大學(xué)2017年畢業(yè)生中共有3人準(zhǔn)備申報(bào)此項(xiàng)貸款,計(jì)算其中恰有兩人選擇貸款期限為12個(gè)月的概率;
(Ⅱ)設(shè)給某享受此項(xiàng)政策的自主創(chuàng)業(yè)人員補(bǔ)貼為X元,寫出X的分布列;該市政府要做預(yù)算,若預(yù)計(jì)2017年全市有600人申報(bào)此項(xiàng)貸款,則估計(jì)2017年該市共要補(bǔ)貼多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 .命題 :方程 表示焦點(diǎn)在 軸上的橢圓;命題 :圓錐曲線 的離心率 ,若命題 為真命題,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸、y軸上的截距相等,求切線的方程;
(2)從圓C外一點(diǎn)P(x1 , y1)向圓引一條切線,切點(diǎn)為M,O為坐標(biāo)原點(diǎn),且有|PM|=|PO|,求使|PM|最小的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案