如圖,直角梯形中,
橢圓為焦點且過點,

(1)建立適當?shù)闹苯亲鴺讼,求橢圓的方程;
(2)若點E滿足是否存在斜率的直線與橢圓交于兩點,且,若存在,求的取值范圍;若不存在,說明理由。
(1)(2)
(1)以AB所在直線為x軸,AB中點為坐標原點建立直角坐標系
在RT中,

設橢圓F的方程為
 ∴        ∴
                                      3分

(2)      由
當直線L斜率不存在時,不滿足   設L的方程為
代入  得
則L與橢圓有兩個不同公共點的充要條件為
                     5分
               
 ,MN的中點為 
等價于 
               6分
                                7分
得       得        8分
代入得                          9分
                                   10分
或者用點差法
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分12分)正方體ABCDA1B1C1D1 的棱長為 2,且AC BD 交于點O,E 為棱DD1 中點,以A 為原點,建立空間直角坐標系Axyz,如圖所示.
(Ⅰ)求證:B1O⊥平面EAC
(Ⅱ)若點 F EA 上且 B1FAE,試求點 F 的坐標;
(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖5,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ) 證明:OD//平面ABC;
(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?
若能,請指出點N的位置,并加以證明;
若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)
如圖,在四邊形中,垂直平分,且,現(xiàn)將四邊形沿折成直二面角,求:
(1)求二面角的正弦值;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分13分)
如圖,在四棱錐中,底面是正方形,其他四個側面都是等邊三角形,的交點為O.
(Ⅰ)求證:平面;
(Ⅱ)已知為側棱上一個動點. 試問對于上任意一點,平面與平面是否垂直?若垂直,請加以證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

從空間一點O出發(fā)的四條射線兩兩所成的角都是θ,則θ一定是
A.銳角B.直角C.鈍角D.銳角或鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,為正方體的棱的中點,為棱上一點,,則        (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在棱長為3的正四面體ABCD中,點E是線段AB上一點,且AE="1," 點F是線段AD上一點,且AF=2,則異面直線DECF的夾角的余弦為                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若兩條異面直線所成的角為,則稱這對異面直線為“理想異面直線對”,在連結正方體各頂點的所有直線中,“理想異面直線對”的對數(shù)為
A.24B.48C.72D.78

查看答案和解析>>

同步練習冊答案