A. | an=$\frac{3}{2}sin({\frac{2π}{3}n-\frac{π}{6}})$ | B. | an=$\sqrt{3}sin({\frac{2π}{3}n+\frac{2π}{3}})$ | ||
C. | an=-$\frac{3}{2}sin({\frac{2π}{3}n+\frac{5π}{6}})$ | D. | an=$\sqrt{3}sin({\frac{2π}{3}n-\frac{π}{3}})$ |
分析 由題設(shè)得到a2=0,a3=-$\frac{3}{2}$,a4=$\frac{3}{2}$,因為數(shù)列有個形如an=Asin(ωn+φ)的通項公式,而數(shù)列的周期是3,由周期公式可求ω,代入得Asin($\frac{2π}{3}$+φ)=$\frac{3}{2}$,Asin(2×$\frac{2π}{3}$+φ)=0,Asin(3×$\frac{2π}{3}$+φ)=-$\frac{3}{2}$,聯(lián)立方程解答A,φ即可得解.
解答 解:∵a1=$\frac{3}{2}$,an=$\frac{1}{2}-\frac{2}{{2{a_{n-1}}+1}}$(n=2,3,4,…),
由此得到a2=0,a3=-$\frac{3}{2}$,a4=$\frac{3}{2}$…
因為數(shù)列有個形如an=Asin(ωn+φ)的通項公式,
而數(shù)列的周期是3,所以$\frac{2π}{ω}$=3,ω=$\frac{2π}{3}$,
代入得Asin($\frac{2π}{3}$+φ)=$\frac{3}{2}$,①
Asin(2×$\frac{2π}{3}$+φ)=0,②
Asin(3×$\frac{2π}{3}$+φ)=-$\frac{3}{2}$,③
因為A,ω,均為實數(shù),且ω>0,
解得:$\left\{\begin{array}{l}{\stackrel{Asinφ=-\frac{3}{2}}{\frac{4π}{3}+φ=kπ}}\\{\frac{\sqrt{3}}{2}Acosφ+\frac{1}{2}Asinφ=\frac{3}{2}}\end{array}\right.$
從而得:A=$\sqrt{3}$,φ=k$π-\frac{4π}{3}$(k∈Z),
所以其中一個通項公式可以是an=$\frac{3}{2}$sin($\frac{2π}{3}$n-$\frac{π}{3}$).
故選:D.
點評 本題主要考查了數(shù)列的性質(zhì)和應(yīng)用,由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的圖象與性質(zhì),綜合性較強,解題時要注意三角函數(shù)的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)關(guān)于直線$x=\frac{π}{3}$對稱 | B. | f(x)是偶函數(shù) | ||
C. | f(x)的最小正周期為2π | D. | f(x)的最大值為1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com