14.已知[x]表示不大于x的最大整數(shù),設(shè)函數(shù)f(x)=[log2$\frac{{2}^{x}+1}{9}$],得到下列結(jié)論,
結(jié)論 1:當(dāng) 2<x<3 時(shí),f(x)max=-1.
結(jié)論 2:當(dāng) 4<x<5 時(shí),f(x)max=1
結(jié)論 3:當(dāng) 6<x<7時(shí),f(x)max=3

照此規(guī)律,結(jié)論6為當(dāng) 12<x<13時(shí),f(x)max=9.

分析 照此規(guī)律,一般性的結(jié)論為當(dāng) 2n<x<2n+1時(shí),f(x)max=2n-3.即可得出結(jié)論.

解答 解:結(jié)論 1:當(dāng) 2<x<3 時(shí),f(x)max=-1.
結(jié)論 2:當(dāng) 4<x<5 時(shí),f(x)max=1
結(jié)論 3:當(dāng) 6<x<7時(shí),f(x)max=3

照此規(guī)律,一般性的結(jié)論為當(dāng) 2n<x<2n+1時(shí),f(x)max=2n-3.
結(jié)論6為當(dāng) 12<x<13時(shí),f(x)max=9,
故答案為當(dāng) 12<x<13時(shí),f(x)max=9.

點(diǎn)評(píng) 本題考查歸納推理,考查學(xué)生分析解決問(wèn)題的能力,正確歸納是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知單位向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,則$|{\overrightarrow a-3\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b滿足(1)中不等式,求證:2|a-b|<|ab+2a+2b|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn)和上頂點(diǎn)分別為A,B,左焦點(diǎn)為F,以原點(diǎn)O為圓心的圓與直線BF相切,且該圓與y軸的正半軸交于點(diǎn)C,過(guò)點(diǎn)C的直線交橢圓于M,N兩點(diǎn),若四邊形FAMN是平行四邊形,則該橢圓的離心率為(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知A(2,0),直線4x+3y+1=0被圓C:(x+3)2+(y-m)2=13(m<3)所截得的弦長(zhǎng)為4$\sqrt{3}$,且P為圓C上任意一點(diǎn),則|PA|的最大值為( 。
A.$\sqrt{29}$-$\sqrt{13}$B.5+$\sqrt{13}$C.2$\sqrt{7}$+$\sqrt{13}$D.$\sqrt{29}$+$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{x+1}$+lg(6-3x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,2)B.(2,+∞)C.[-1,2)D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知一長(zhǎng)方體的體對(duì)角線的長(zhǎng)為l0,這條對(duì)角線在長(zhǎng)方體一個(gè)面上的正投影長(zhǎng)為8,則這個(gè)長(zhǎng)方體體積的最大值為( 。
A.64B.128C.192D.384

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)$f(x)=\frac{x^3}{cosx}$的定義域?yàn)?({-\frac{π}{2},\frac{π}{2}})$,當(dāng)$|{x_i}|<\frac{π}{2}$(i=1,2,3)時(shí),若x1+x2>0,x2+x3>0,x1+x3>0,則有f(x1)+f(x2)+f(x3)的值( 。
A.恒小于零B.恒等于零
C.恒大于零D.可能大于零,也可能小于零

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖1,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是AB邊的中點(diǎn),現(xiàn)把△ACP沿CP折成如圖2所示的三棱錐A-BCP,使得AB=$\sqrt{10}$.
(1)求證:平面ACP⊥平面BCP;
(2)求二面角B-AC-P的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案