分析 通過數(shù)列{an}的前n項(xiàng)和為3n2-2n+2可知an=$\left\{\begin{array}{l}{3,}&{n=1}\\{6n-5,}&{n≥2}\end{array}\right.$,利用bn=a2n-1、計(jì)算即得結(jié)論.
解答 解:∵數(shù)列{an}的前n項(xiàng)和為3n2-2n+2,
∴an+1=[3(n+1)2-2(n+1)+2]-(3n2-2n+2)
=6(n+1)-5,
又∵a1=3-2+2=3不滿足上式,
∴an=$\left\{\begin{array}{l}{3,}&{n=1}\\{6n-5,}&{n≥2}\end{array}\right.$,
∴bn=a2n-1=6(2n-1)-5=12n-11(n≥2),
又∵b1=a1=3不滿足上式,
∴bn=$\left\{\begin{array}{l}{3,}&{n=1}\\{12n-11,}&{n≥2}\end{array}\right.$.
點(diǎn)評 本題考查數(shù)列的通項(xiàng),考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 11 | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 0 | C. | -2 | D. | ±2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com