A. | k≤-3或-1≤k≤1或k≥3 | B. | 不存在這樣的實數(shù)k | ||
C. | -2<k<2 | D. | -3<k<-1或1<k<3 |
分析 由題意得,區(qū)間(k-1,k+1)內(nèi)必須含有導函數(shù)的零點2或-2,即k-1<2<k+1或k-1<-2<k+1,解之即可求出實數(shù)k的取值范圍.
解答 解:由題意可得f′(x)=3x2-12 在區(qū)間(k-1,k+1)上至少有一個零點,
而f′(x)=3x2-12的零點為±2,區(qū)間(k-1,k+1)的長度為2,
故區(qū)間(k-1,k+1)內(nèi)必須含有2或-2.
∴k-1<2<k+1或k-1<-2<k+1,
∴1<k<3 或-3<k<-1,
故選D.
點評 本題考查函數(shù)的單調(diào)性與導數(shù)的關(guān)系,把函數(shù)在區(qū)間上不是單調(diào)函數(shù)轉(zhuǎn)化為導函數(shù)在區(qū)間上有零點是解決問題的關(guān)鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -3 | B. | -7 | C. | -6 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\sqrt{{x}^{2}}$與y=($\sqrt{x}$)2 | B. | f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1 | ||
C. | y=x-1(x∈R)與y=x-1(x∈N) | D. | y=1+$\frac{1}{x}$與y=1+$\frac{1}{t}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-3,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,0)∪(3,+∞) | D. | (-∞,-3)∪(0,+3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com