已知cosα=
5
5
,且tanα<0,則sinα的值為(  )
A、-
5
2
B、
5
2
C、-
2
5
5
D、
2
5
5
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:依題意知,α是第四象限的角,利用同角三角函數(shù)間的關(guān)系即可求得答案.
解答: 解:∵cosα=
5
5
,且tanα<0,
∴α是第四象限的角,
∴sinα=-
1-cos2α
=-
2
5
5
,
故選:C.
點(diǎn)評:本題考查同角三角函數(shù)間的關(guān)系及其應(yīng)用,考查象限角的確定,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

連接橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個焦點(diǎn)和一個頂點(diǎn)得到的直線方程為x-2y+2=0,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
sin(πx2),-1<x<0
ex-1,x≥0
,若f(a)=1,則a的所有可能值組成的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
,
b
滿足|
a
|=1,|
b
|=2,|
a
-
b
|=2,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+2a-1,x<2
x2-2x+3,x≥2
,對一切實數(shù)R都有
f(x1)-f(x2)
x1-x2
>0,則a的取值范圍是( 。
A、(0,1)
B、(0,1]
C、[-1,0)
D、(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-
y2
3
=1的焦點(diǎn)到漸近線的距離是( 。
A、
3
B、2
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈[-2,2]、f(x)=2x分別是雙曲線f(x)的左、右焦點(diǎn),f(x)=2為雙曲線上的一點(diǎn),若∠F1PF2=90°,且△F1PF2的三邊長成等差數(shù)列,則雙曲線的離心率是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-2x-4lnx的導(dǎo)函數(shù)為f′(x),則f′(x)>0的解集為(  )
A、(0,+∞)
B、(-1,0)∪(2,+∞)
C、(-1,0)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+2,x≥0
x2,x<0
,則f(f(-2))的值為( 。
A、0B、2C、4D、6

查看答案和解析>>

同步練習(xí)冊答案