(本小題滿分12分)
如圖所示,五面體ABCDE中,正的邊長為1,AE丄平面ABC, CD//AE,且CD =AE.
(I)設(shè)CE與平面ABE所成的角為a,AE=k(k>0),若,求A的取值范圍;
(II)在(I )的條件下,當(dāng)k取得最大值時,求平面BDE與平面ABC所成角的大小.
(本小題滿分12分)
解:方法一:
(Ⅰ)取中點(diǎn),連結(jié)、,由為正三角形,得,又,則,可知,所以為與平面所成角.……………2分
,………………4分
因?yàn)?sub>,得,得.……………6分
(Ⅱ)延長交于點(diǎn)S,連,
可知平面平面=.………………………7分
由,且,又因?yàn)?sub>=1,從而,…………………8分
又面,由三垂線定理可知,即為平面與平面所成的角;……………………10分
則,
從而平面與面所成的角的大小為.………………12分
方法二:
解:
(Ⅰ)如圖以C為坐標(biāo)原點(diǎn),CA、CD為y、z軸,垂直于CA、CD的直線CT為x軸,建立空間直角坐標(biāo)系(如圖),則
設(shè),,,.……………2分
取AB的中點(diǎn)M,則,
易知,ABE的一個法向量為,
由題意.………………4分
由,則,
得.…………………6分
(Ⅱ)由(Ⅰ)知最大值為,則當(dāng)時,設(shè)平面BDE法向量為,則
取,………………8分
又平面ABC法向量為,……………………10分
所以=,
所以平面BDE與平面ABC所成角大小……………………12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com