已知函數(shù)的圖象過點P(0,2),且在點M(-1,)處的切線方程。
(1)求函數(shù)的解析式;
(2)求函數(shù)與的圖像有三個交點,求的取值范圍。
(1);(2)
【解析】
試題分析:(1)將點代入函數(shù)解析式可得的值,將代入直線可得的值,再由切線方程可知切線的斜率為6,由導(dǎo)數(shù)的幾何意義可知即,解由和組成的方程組可得的值。(2)可將問題轉(zhuǎn)化為有三個不等的實根問題,將整理變形可得,令,則的圖像與圖像有三個交點。然后對函數(shù)求導(dǎo),令導(dǎo)數(shù)等于0求其根。討論導(dǎo)數(shù)的符號,導(dǎo)數(shù)正得增區(qū)間,導(dǎo)數(shù)負得減區(qū)間,根據(jù)函數(shù)的單調(diào)性得函數(shù)的極值,數(shù)形結(jié)合分析可得出的取值范圍。
(1)由的圖象經(jīng)過點,知。
所以,則
由在處的切線方程是知,即。所以即解得。
故所求的解析式是。
(2)因為函數(shù)與 的圖像有三個交點
所以有三個根
即有三個根
令,則的圖像與圖像有三個交點。
接下來求的極大值與極小值(表略)。
的極大值為 的極小值為
因此
考點:1導(dǎo)數(shù)的幾何意義;2用導(dǎo)數(shù)研究函數(shù)的圖像及性質(zhì)。
科目:高中數(shù)學 來源:2015屆山東省濰坊市高二下學期入學考試數(shù)學試卷(解析版) 題型:選擇題
過拋物線y 2=4x的焦點作直線,交拋物線于A(x1, y 1) ,B(x2, y 2)兩點,如果x1+ x2=6,那么|AB|=
A.8 B.10 C.6 D.4
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題
若函數(shù)有極值點,且,若關(guān)于的方程的不同實數(shù)根的個數(shù)是( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:選擇題
以橢圓的長軸端點為焦點、以橢圓焦點為頂點的雙曲線方程為 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:填空題
函數(shù)的圖像在點)處的切線與軸的交點的橫坐標為()若,則= 。
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:選擇題
設(shè)是橢圓上一點,是橢圓的兩個焦點, ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省高二下學期期中考試理科數(shù)學試卷(解析版) 題型:填空題
下列命題中:(1)若滿足,滿足,則;
(2)函數(shù)且的圖象恒過定點A,若A在 上,其中則的最小值是; (3)設(shè)是定義在R上,以1為周期的函數(shù),若在上的值域為,則在區(qū)間上的值域為; (4)已知曲線與直線僅有2個交點,則; (5)函數(shù)圖象的對稱中心為(2,1)。
其中真命題序號為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com