15.函數(shù)f(x)=$\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}$(a>0且a≠1)是R上的增函數(shù),則a的取值范圍是(  )
A.(0,1)B.(1,3)C.(2,3)D.$[\frac{3}{2},3)$

分析 根據(jù)函數(shù)的單調(diào)性結(jié)合一次函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì)得到關(guān)于a的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{3-a>0}\\{3-a-a≤0}\\{a>1}\end{array}\right.$,
解得:$\frac{3}{2}$≤a<3,
故選:D.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問(wèn)題,考查一次函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知關(guān)于x的不等式x2-ax-2>0的解集為{x|x<-1或x>b}(b>-1).
(1)求a,b的值;
(2)當(dāng)m>-$\frac{1}{2}$時(shí),解關(guān)于x的不等式(mx+a)(x-b)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知雙曲線的一個(gè)焦點(diǎn)為(4,0),離心率為e=2.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫(xiě)出該雙曲線的漸進(jìn)線方程,并求它的焦點(diǎn)(4,0)到另一條漸進(jìn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知等差數(shù)列{an}的公差d=-2,a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99的值是-82.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若不等式(x-a)?(x+a)=(1-x+a)(1+x+a)=(1+a)2-x2<1對(duì)任意實(shí)數(shù)x成立,則( 。
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=loga(2+x),g(x)=loga(2-x),a>0且a≠1,設(shè)函數(shù)h(x)=f(x)+g(x).
(1)當(dāng)a=2時(shí),求h(x)的定義域和值域;
(2)當(dāng)f(x)>g(x)時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足條件b2+c2-a2=bc=1,cosBcosC=-$\frac{1}{8}$,則△ABC的周長(zhǎng)為$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(X)在R上的圖象是連續(xù)的,若a<b<c,且f(a)•f(b)<0,f(b)•f(c)<0,則函數(shù)f(x)在(a,c)內(nèi)的零點(diǎn)個(gè)數(shù)是(  )
A.2個(gè)B.不小于2的奇數(shù)個(gè)C.不小于2的偶數(shù)個(gè)D.至少2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.復(fù)數(shù)z滿足(3+4i)z=5-10i,則$\overline{z}$=( 。
A.-1-2iB.-1+2iC.$\frac{11}{5}$+2iD.$\frac{11}{5}$-2i

查看答案和解析>>

同步練習(xí)冊(cè)答案