化簡求值.
(1)log2
7
48
+log212-
1
2
log242-1;
(2)(lg2)2+lg2•lg50+lg25;
(3)(log32+log92)•(log43+log83).
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的運算法則與換底公式即可得出.
解答: 解:(1)原式=log2
7
48
+log212-
1
2
log2
42
-log22=log2
7
×12
48
×
42
×2
=log2
1
2
2
=log22-
3
2
=-
3
2
;
(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.
(3)原式=(
lg2
lg3
+
lg2
2lg3
)(
lg3
2lg2
+
lg3
3lg2
)
=
lg2
lg3
lg3
lg2
(1+
1
2
)•(
1
2
+
1
3
)
=
3
2
×
5
6
=
5
4
點評:本題考查了對數(shù)的運算法則與換底公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且x>0時,f(x)=x+7.
(1)求f(1),f(-1);
(2)求函數(shù)f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:滿足斜率為2,與y軸交于P(0,m),m為何值時,直線l與圓x2+y2=5.
(1)無公共點;
(2)截得的弦長為2;
(3)交點處兩條半徑互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

永恒太陽能公司的某車間生產(chǎn)某設(shè)備A的固定成本為10000元,每生產(chǎn)一臺設(shè)備A需要增加投入50元,已知月總收益滿足函數(shù):R(x)=
200x-
1
4
x2(0≤x≤300)
37500(x>300)
,其中x是某設(shè)備A的月產(chǎn)量,
(1)將該車產(chǎn)的月利潤表示為月產(chǎn)量的函數(shù).
(2)當(dāng)月產(chǎn)量為何值時,該車間所獲得的月利潤最大?最大月利潤是多少?(總收益=總成本+利潤).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式
1-x
2x+1
≥0的解集為( 。
A、(-
1
2
,1]
B、[-
1
2
,1]
C、(-∞,-
1
2
)∪[1,+∞)
D、(-∞,-
1
2
]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,定義在[-1,+∞)上的函數(shù)f(x)的圖象由一條線段及拋物線的一部分組成,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列六個關(guān)系式中,其中錯誤的是(  )
①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅?{0};⑥0∈{0}.
A、①③B、②④⑤
C、①②⑤⑥D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四個式子:
①{0}=∅,
②{2}∈{2,4,6},
③{1}∈{x|x2-3x+2=0},
④0⊆{0}
其中正確的式子共有( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,q=2,log2a1+log2a2+…+log2a10=25,則a1+a2+…+a10等于( 。
A、237
B、
1021
4
C、
1023
4
D、250

查看答案和解析>>

同步練習(xí)冊答案