11.復數(shù)z滿足(1-i)z=2,則z的虛部是1.

分析 把已知等式變形,利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:∵(1-i)z=2,
∴$z=\frac{2}{1-i}=\frac{2(1+i)}{(1-i)(1+i)}=\frac{2(1+i)}{2}=1+i$,
∴z的虛部是1.
故答案為:1.

點評 本題考查復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線1的參數(shù)方程為$\left\{\begin{array}{l}{x=-3-\frac{\sqrt{6}}{3}t}\\{y=\frac{\sqrt{3}}{3}t}\end{array}\right.$ (t為參數(shù)),在直角坐標系中,以原點O為原點,x為極軸建立極坐標系,曲線C的方程為ρ=4$\sqrt{2}$cos(θ+$\frac{π}{4}$)+4sinθ.
(1)求曲線C的直角坐標方程;
(2)點P、Q分別為直線1與曲線C上的動點,求|PQ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=($\frac{1}{2}$)x-lgx零點的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x3+bx2+cx在x=1處的切線方程為6x-2y-1=0,f′(x)為f(x)的導函數(shù),g(x)=a•ex(a,b,c∈R,e為自然對數(shù)的底)
(1)求b,c的值;
(2)若?x∈(0,2),使g(x)=f′(x)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.現(xiàn)有以下兩項調(diào)查:①某裝訂廠平均每小時大約裝訂圖書362冊,要求檢驗員每小時抽取40冊圖書,檢查其裝訂質(zhì)量狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進行調(diào)查.完成①、②這兩項調(diào)查宜采用的抽樣方法依次是( 。
A.簡單隨機抽樣法,分層抽樣B.分層抽樣法,簡單隨機抽樣法
C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.某廠用甲、乙兩種原料生產(chǎn)A,B兩種產(chǎn)品,制造1t A,1t B產(chǎn)品需要的各種原料數(shù)、可得到利潤以及工廠現(xiàn)有各種原料數(shù)如下表:
原料每種產(chǎn)品所需原料(t)現(xiàn)有原
料數(shù)(t)
AB
2114
1318
利潤(萬元/t)53-
(1)在現(xiàn)有原料條件下,生產(chǎn)A,B兩種產(chǎn)品各多少時,才能使利潤最大?
(2)每噸B產(chǎn)品的利潤在什么范圍變化時,原最優(yōu)解不變?當超出這個范圍時,最優(yōu)解有何變化?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系xOy中,已知點A(-2,3)、B(1,2)、C(-3,2).
(Ⅰ)求以線段AB、AC為鄰邊的平行四邊形的兩條對角線的長;
(Ⅱ)當t為何值時,$\overrightarrow{AB}$-t$\overrightarrow{OC}$與$\overrightarrow{OC}$垂直;
(Ⅲ)當t為何值時,t$\overrightarrow{OA}$+$\overrightarrow{OB}$與2$\overrightarrow{OA}$-$\overrightarrow{OB}$平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)f(x)=lg(mx2+2mx+1),若f(x)的值域為R,則實數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.(1)已知long3(18-3x)=x,求x的值;
(2)計算:(-$\frac{1}{\sqrt{7}-\sqrt{2}}$)0+810.75-$\sqrt{(-5)^{2}}$×8${\;}^{\frac{2}{3}}$+log47•log764.

查看答案和解析>>

同步練習冊答案