【題目】如圖,已知三棱錐P﹣ABC的底面是等腰直角三角形,且∠ACB= ,側(cè)面PAB⊥底面ABC,AB=PA=PB=2.則這個(gè)三棱錐的三視圖中標(biāo)注的尺寸x,y,z分別是(
A. ,1,
B. ,1,1
C.2,1,
D.2,1,1

【答案】B
【解析】解:∵三棱錐P﹣ABC的底面是等腰直角三角形,且∠ACB=

側(cè)面PAB⊥底面ABC,AB=PA=PB=2;

∴x是等邊△PAB邊AB上的高,x=2sin60°=

y是邊AB的一半,y= AB=1,

z是等腰直角△ABC斜邊AB上的中線,z= AB=1;

∴x,y,z分別是 ,1,1.

故選:B.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解簡(jiǎn)單空間圖形的三視圖(畫(huà)三視圖的原則:長(zhǎng)對(duì)齊、高對(duì)齊、寬相等).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=sin(2x+φ)的圖象沿x軸向左平移 個(gè)單位后,得到一個(gè)偶函數(shù)的圖象,則φ的一個(gè)可能的值為(
A.
B.
C.0
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義max{a,b}= ,已知函數(shù)f(x)=max{|2x﹣1|,ax2+b},其中a<0,b∈R,若f(0)=b,則實(shí)數(shù)b的范圍為 , 若f(x)的最小值為1,則a+b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)與g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)﹣g(x)=x3﹣2x , 則f(2)+g(2)=(
A.4
B.﹣4
C.2
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1= ,Sn=n2an﹣n(n﹣1),n=1,2,…
(1)證明:數(shù)列{ Sn}是等差數(shù)列,并求Sn;
(2)設(shè)bn= ,求證:b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F(xiàn),G,H分別為BP,BE,PC的中點(diǎn).
(1)求證:GH∥平面ADPE;
(2)M是線段PC上一點(diǎn),且PM= ,求二面角C﹣EF﹣M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱錐P﹣ABC中,PA、PB、PC互相垂直,PA=PB=1,M是線段BC上一動(dòng)點(diǎn),若直線AM與平面PBC所成角的正切的最大值是 ,則三棱錐P﹣ABC的外接球的表面積是(
A.2π
B.4π
C.8π
D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于當(dāng)前學(xué)生課業(yè)負(fù)擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機(jī)抽取16名學(xué)生,經(jīng)校醫(yī)用對(duì)數(shù)視力表檢查得到每個(gè)學(xué)生的視力狀況的莖葉圖(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉)如圖:
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若視力測(cè)試結(jié)果不低丁5.0,則稱(chēng)為“好視力”,求校醫(yī)從這16人中隨機(jī)選取3人,至多有1人是“好視力”的概率;
(Ⅲ)以這16人的樣本數(shù)據(jù)來(lái)估計(jì)整個(gè)學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記ξ表示抽到“好視力”學(xué)生的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x,y∈R,且 ,則存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)構(gòu)成的區(qū)域面積為(
A.4
B.4
C.
D. +

查看答案和解析>>

同步練習(xí)冊(cè)答案