15.如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=1.
(1)求棱AA1與BC所成的角的大。
(2)在棱B1C1上確定一點(diǎn)P,使二面角P-AB-A1的平面角的余弦值為$\frac{{2\sqrt{5}}}{5}$.

分析 (1)以A為原點(diǎn),AC為x軸,AB為y軸,過A作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AA1與棱BC所成的角的大。
(2)P為棱B1C1上一點(diǎn),求出平面PAB的法向量和平面ABA1的法向量,利用向量法能求出P為棱B1C1中點(diǎn).

解答 解:(1)如圖,以A為原點(diǎn),AC為x軸,AB為y軸,過A作平面ABC的垂線為z軸,建立空間直角坐標(biāo)系,
則C(1,0,0),B(0,1,0),A1(0,1,1),B1(0,2,1),
$\overrightarrow{A{A_1}}=(0,1,1)$,$\overrightarrow{BC}=\overrightarrow{{B_1}{C_1}}=(1,-1,0)$,(3分)
∴$cos<\overrightarrow{A{A_1}},\overrightarrow{BC}>=\frac{{\overrightarrow{A{A_1}}•\overrightarrow{BC}}}{{|{\overrightarrow{A{A_1}}}||{\overrightarrow{BC}}|}}=\frac{-1}{{\sqrt{2}•\sqrt{2}}}=-\frac{1}{2}$,
故AA1與棱BC所成的角是$\frac{π}{3}$.
(2)P為棱B1C1上一點(diǎn),設(shè)$\overrightarrow{{B_1}P}=λ\overrightarrow{{B_1}{C_1}}=(λ,-λ,0)$,則P(λ,2-λ,1),
設(shè)平面PAB的法向量為$\overrightarrow{n_1}=(x,y,z)$,$\overrightarrow{AP}=(λ,2-λ,1)$,
則$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{AP}=0}\\{\overrightarrow{n_1}•\overrightarrow{AB}=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{λx+z=0}\\{y=0}\end{array}}\right.⇒\left\{{\begin{array}{l}{z=-λx}\\{y=0}\end{array}}\right.$,則$\overrightarrow{n_1}=(1,0,-λ)$,(9分)
而平面ABA1的法向量是$\overrightarrow{n_2}=(1,0,0)$,
∴$cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{{\overrightarrow{n_1}•\overrightarrow{n_2}}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{1}{{\sqrt{1+{λ^2}}}}=\frac{{2\sqrt{5}}}{5}$,解得$λ=\frac{1}{2}$,
即P為棱B1C1中點(diǎn),其坐標(biāo)為$P(\frac{1}{2},\frac{3}{2},1)$.(12分)

點(diǎn)評 本題考查異南在線所成角的大小的求法,考查滿足條件的瞇的位置的確定,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程$\widehat{y}$=0.85x-85.71,則下列結(jié)論中不正確的是( 。
A.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
B.回歸直線過樣本的中心($\overline{x}$,$\overline{y}$)
C.y與x具有正的線性相關(guān)關(guān)系
D.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合A={x∈R|0<x<1},B={x∈R|x•(2x-1)>0},則A∩B=(  )
A.{x∈R|0<x<$\frac{1}{2}$}B.{x∈R|$\frac{1}{2}$<x<1}C.{x∈R|0<x<1}D.{x∈R|x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+(2a-1)x-ax2-a+1,
(1)若$a=\frac{1}{2}$,求f(x)的單調(diào)區(qū)間;
(2)若x∈[1,+∞)時(shí)恒有f(x)≤0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程[f(x)]2-af(x)+2=0恰有四個(gè)不同的實(shí)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞)B.(2$\sqrt{2}$,3)C.(2,3)D.(2$\sqrt{2}$,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖是調(diào)查某地區(qū)男女中學(xué)生是否喜歡理科的等高條形圖,從如圖可以看出該地區(qū)的中學(xué)生( 。
A.性別與是否喜歡理科無關(guān)B.女生中喜歡理科的比為80%
C.男生比女生喜歡理科的可能性大D.男生中喜歡理科的比例為80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在獨(dú)立性檢驗(yàn)中,隨機(jī)變量K2有兩個(gè)臨界值:3.841和6.635;當(dāng)K2>3.841時(shí),有95%的把握說明兩個(gè)事件有關(guān),當(dāng)K2>6.635時(shí),有99%的把握說明兩個(gè)事件有關(guān),當(dāng)K2≤3.841時(shí),認(rèn)為兩個(gè)事件無關(guān),在一項(xiàng)打鼾與患心臟病的調(diào)查中,共調(diào)查了2 000人,經(jīng)計(jì)算得k=20.87,根據(jù)這一數(shù)據(jù)分析(  )
A.在犯錯誤的概率不超過0.05的前提下,認(rèn)為打鼾與患心臟病有關(guān)
B.約有95%的打鼾者患心臟病
C.在犯錯誤的概率不超過0.01的前提下,認(rèn)為打鼾與患心臟病有關(guān)
D.約有99%的打鼾者患心臟病

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求下列函數(shù)的定義域與值域:
(1)y=$\sqrt{1-(\frac{1}{2})^{x}}$;
(2)y=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),F(xiàn)1(-c,0)是左焦點(diǎn),圓x2+y2=c2與雙曲線左支的一個(gè)交點(diǎn)是P,若直線PF1與雙曲線右支有交點(diǎn),則雙曲線的離心率的取值范圍是($\sqrt{5}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案