在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,B=
π
3
,cosA=
4
5
,b=
3

(1)求sinC的值;
(2)求△ABC的面積.
考點(diǎn):正弦定理,兩角和與差的正弦函數(shù)
專題:解三角形
分析:(1)由B的度數(shù),用A表示出C,由cosA的值求出sinA的值,將表示出的C代入sinC中,利用兩角和與差的正弦函數(shù)公式化簡,把cosA與sinA的值代入計(jì)算即可求出值;
(2)由sinA,sinB,以及b的值,利用正弦定理求出a的值,再利用三角形面積公式求出三角形ABC面積即可.
解答: 解:(1)∵A、B、C為△ABC的內(nèi)角,且B=
π
3
,cosA=
4
5
,
∴C=
3
-A,sinA=
3
5
,
∴sinC=sin(
3
-A)=
3
2
cosA+
1
2
sinA=
3+4
3
10

(2)由(1)知sinA=
3
5
,sinC=
3+4
3
10
,
又∵B=
π
3
,b=
3
,
∴在△ABC中,由正弦定理,得a=
bsinA
sinB
=
6
5

∴S△ABC=
1
2
absinC=
1
2
×
6
5
×
3
×
3+4
3
10
=
36+9
3
50
點(diǎn)評(píng):此題考查了正弦定理,三角形面積公式,以及兩角和與差的正弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a5a6+a3a8=16,則log2a1+log2a2+…+log2a10的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=2,則
sinα+cosα
cosα-sinα
的值為( 。
A、-3B、3C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3(x2+ax+a+5),f(x)在區(qū)間(-∞,1)上是遞減函數(shù),則實(shí)數(shù)a的取值范圍為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,
-2b-c
a
=
cosC
cosA

(1)求角A的大;
(2)若△ABC的面積S=
3
,求△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)+
1-a-x
ax+a2
,(a>0);
(Ⅰ)若a=1,求f(x)的最小值;
(Ⅱ)若y=f(x)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí)方程f(x)=k(k>0)存在兩個(gè)異號(hào)實(shí)根x1,x2;求證:x1+x2>0,其中[(ln(-x+1))′=
-1
-x+1
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={y|y=2sinx,x∈[-5,5],N={x|y=log2(x-1)},則M∩N=(  )
A、{x|1<x<5}
B、{x|1<x≤0}
C、{x|-2≤x≤0}
D、{x|1<x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦距為8,離心率為0.8,則橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)2log72-log79+2log7
3
2
2
);
(2)(
1
8
 -
2
3
-
4(-3)4
+(2
1
4
 
1
2
-(1.5)0

查看答案和解析>>

同步練習(xí)冊(cè)答案