1.已知平面內(nèi)兩點(diǎn)A(4,0),B(0,2)
(1)求過(guò)P(2,3)點(diǎn)且與直線AB平行的直線l的方程;
(2)設(shè)O(0,0),求△OAB外接圓方程.

分析 (1)求出直線的斜率,利用點(diǎn)斜式求出直線方程;
(2)根據(jù)題意,△AOB是以AB為斜邊的直角三角形,因此外接圓是以AB為直徑的圓.由此算出AB中點(diǎn)C的坐標(biāo)和AB長(zhǎng)度,結(jié)合圓的標(biāo)準(zhǔn)方程形式,即可求出△AOB的外接圓的方程.

解答 解:(1)由已知得${k_{AB}}=\frac{2-0}{0-4}=-\frac{1}{2}$.
由點(diǎn)斜式$y-3=-\frac{1}{2}(x-2)$
∴直線l的方程x+2y-8=0.
(2)OA⊥OB,可得△AOB的外接圓是以AB為直徑的圓
∵AB中點(diǎn)為C(2,1),|AB|=2$\sqrt{5}$.∴圓的圓心為C(2,1),半徑為r=$\sqrt{5}$.
可得△AOB的外接圓的方程為(x-2)2+(y-1)2=5.

點(diǎn)評(píng) 本題著重考查了直線方程,考查圓的方程、中點(diǎn)坐標(biāo)公式和三角形形狀的判斷等知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某路口人行橫道的信號(hào)燈為紅燈和綠燈交替出現(xiàn),紅燈持續(xù)時(shí)間為80秒.若一名行人來(lái)到該路口遇到紅燈,則至少需要等待30秒才出現(xiàn)綠燈的概率為(  )
A.$\frac{3}{8}$B.$\frac{5}{8}$C.$\frac{1}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知數(shù)列{an}通項(xiàng)an=2n-1,且數(shù)列{$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$}的前m項(xiàng)和為5,則m=60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)$f(x)=\frac{x^3}{3}+\frac{1}{x}$的導(dǎo)數(shù)f'(x)=( 。
A.$\frac{x^2}{3}+\frac{1}{x}$B.${x^2}-\frac{1}{x^2}$C.$-{x^2}-\frac{1}{x^2}$D.x2+lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某中學(xué)將100名高二文科生分成水平相同的甲、乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲、乙兩個(gè)班進(jìn)行教改實(shí)驗(yàn).為了了解教學(xué)效果,期末考試后,陳老師對(duì)甲、乙兩個(gè)班級(jí)的學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)分析,畫出頻率分布直方圖(如圖).記成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;
甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀12420
成績(jī)不優(yōu)秀384680
總計(jì)5050100
(Ⅱ)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為:“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若扇形的中心角α=60°,扇形半徑R=12cm,則陰影表示的弓形面積為24π-36$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C,的對(duì)邊分別為a,b,c,已知向量$\overrightarrow{m}$=(cos$\frac{3π}{2}$,-sin$\frac{3π}{2}$),$\overrightarrow{n}$=(cos$\frac{A}{2}$,sin$\frac{A}{2}$),且滿足|$\overrightarrow{m}$+$\overrightarrow{n}$|=$\sqrt{3}$
(1)求角A的大;
(2)若b+c=$\sqrt{3}$a,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.從1,2,3,4中任取兩個(gè)數(shù),記作a,b,則兩數(shù)之和a+b小于5的概率為( 。
A.$\frac{5}{6}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某市5年中的煤氣消耗量與使用煤氣戶數(shù)的歷史資料如下:
年份20062007200820092010
x用戶(萬(wàn)戶)11.11.51.61.8
y(萬(wàn)立方米)6791112
(1)檢驗(yàn)是否線性相關(guān);
(2)求回歸方程;
(3)若市政府下一步再擴(kuò)大兩千煤氣用戶,試預(yù)測(cè)該市煤氣消耗量將達(dá)到多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案