分析 設直線l:x+y=1上任意一點M(x,y)在矩陣A的變換作用下,變換為點M′(x′,y′),根據(jù)矩陣A列出關系式,得到x與x′,y與y′的關系式,再由M′(x′,y′)在直線l'上,求出m與n的值,即可確定出矩陣A.
解答 解:設直線l:x+y=1上任意一點M(x,y)在矩陣A的變換作用下,變換為點M′(x′,y′),
由[$\underset{\stackrel{x′}{\;}}{y′}$]=[$\underset{\stackrel{m}{\;}}{0}$ $\underset{\stackrel{n}{\;}}{1}$][$\underset{\stackrel{x}{\;}}{y}$]=[$\underset{\stackrel{mx+ny}{\;}}{y}$],得$\left\{\begin{array}{l}{x′=mx+ny}\\{y′=y}\end{array}\right.$,
又點M′(x′,y′)在l′:x-y=1上,
∴x′-y′=1,即(mx+ny)-y=1,
依題意$\left\{\begin{array}{l}{m=1}\\{n-1=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{m=1}\\{n=2}\end{array}\right.$,
則矩陣A=[$\underset{\stackrel{1}{\;}}{0}$ $\underset{\stackrel{2}{\;}}{1}$].
點評 此題考查了幾種特殊的矩形變換,找出M在矩陣A的變換作用下點M′兩點的坐標關系是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{11}{30}$ | B. | $\frac{13}{30}$ | C. | $\frac{11}{25}$ | D. | $\frac{13}{25}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com