【題目】已知?jiǎng)訄AM過(guò)定點(diǎn)P(1,0),且與直線(xiàn)x=﹣1相切.
(1)求動(dòng)圓圓心M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩點(diǎn),且 =0,求證:直線(xiàn)AB過(guò)定點(diǎn).

【答案】
(1)解:設(shè)M(x,y),

M到直線(xiàn)x=﹣1的距離為|x+1|,又|PM|= ,

∴|x+1|= ,兩邊平方得x2+2x+1=x2﹣2x+1+y2,

∴y2=4x.

∴動(dòng)圓圓心M的軌跡C的方程為y2=4x


(2)解:設(shè)直線(xiàn)AB為:x=ty+m,

聯(lián)立方程組 ,消元得y2﹣4ty﹣4m=0,

設(shè)A(x1,y1),B(x2,y2),∴y1+y2=4t,y1y2=﹣4m.

∴x1x2=(ty1+m)(ty2+m)=t2y1y2+mt(y1+y2)+m2

=x1x2+y1y2=﹣4mt2+4mt2+m2﹣4m=m2﹣4m=0,

解得m=4或m=0(舍).

∴直線(xiàn)AB恒過(guò)定點(diǎn)(4,0)


【解析】(1)設(shè)M(x,y)求出PM和M到切線(xiàn)x=﹣1的距離,列出方程整理化簡(jiǎn)即可得出軌跡方程;(2)設(shè)直線(xiàn)AB的方程為x=ty+m,聯(lián)立方程組消元,設(shè)A(x1 , y1),B(x2 , y2),利用根與系數(shù)的關(guān)系計(jì)算x1x2 , y1y2 , 令x1x2+y1y2=0即可得出m,得出AB的定點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某租賃公司擁有汽車(chē)100輛.當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出.當(dāng)每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加一輛.租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.

1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?

2)當(dāng)每輛車(chē)的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=f(x)的圖象如圖所示.觀察圖象可知函數(shù)y=f(x)的定義域、值域分別是( 。

A.[﹣5,0]∪[2,6),[0,5]
B.[﹣5,6),[0,+∞)
C.[﹣5,0]∪[2,6),[0,+∞)
D.[﹣5,+∞),[2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)、,如果存在實(shí)數(shù)使得,那么稱(chēng)的生成函數(shù).

(1) 下面給出兩組函數(shù), 是否分別為、的生成函數(shù)?并說(shuō)明理由;

第一組: ,

第二組: , , ;

(2) 設(shè), , ,生成函數(shù).若不等式上有解,求實(shí)數(shù)的取值范圍;

(3) 設(shè), ,取,生成函數(shù)圖像的最低點(diǎn)坐標(biāo)為.若對(duì)于任意正實(shí)數(shù),且,試問(wèn)是否存在最大的常數(shù),使恒成立?如果存在,求出這個(gè)的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束.除第五局甲隊(duì)獲勝的概率是外,其余每局比賽甲隊(duì)獲勝的概率都是.假設(shè)各局比賽結(jié)果相互獨(dú)立.

1)分別求甲隊(duì)以30,3132獲勝的概率;

2)若比賽結(jié)果為3031,則勝利方得3分、對(duì)方得0分;若比賽結(jié)果為3:2,則勝利方得2分、對(duì)方得1.求甲隊(duì)得分X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1的離心率為 ,焦距為2,右焦點(diǎn)為F,過(guò)點(diǎn)F的直線(xiàn)交橢圓于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)在x軸上是否存在定點(diǎn)M,使得 為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連續(xù)2次拋擲﹣枚骰子(六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).則事件“兩次向上的數(shù)字之和等于7”發(fā)生的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=mx1 , g(x)=﹣1+logmx(m>0,m≠1),有如下兩個(gè)命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則(
A.命題p,q都正確
B.命題p正確,命題q不正確
C.命題p,q都不正確
D.命題q不正確,命題p正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】自駕游從地到地有甲乙兩條線(xiàn)路,甲線(xiàn)路是,乙線(xiàn)是,其中段、段、段都是易堵車(chē)路段.假設(shè)這三條路段堵車(chē)與否相互獨(dú)立.這三條路段的堵車(chē)概率及平均堵車(chē)時(shí)間如表1所示.經(jīng)調(diào)查發(fā)現(xiàn),堵車(chē)概率上變化, 上變化.在不堵車(chē)的情況下.走線(xiàn)路甲需汽油費(fèi)500元,走線(xiàn)路乙需汽油費(fèi)545元.而每堵車(chē)1小時(shí),需多花汽油費(fèi)20元.路政局為了估計(jì)段平均堵車(chē)時(shí)間,調(diào)查了100名走甲線(xiàn)路的司機(jī),得到表2數(shù)據(jù).

CD段

EF段

GH段

堵車(chē)概率

平均堵車(chē)時(shí)間

(單位:小時(shí))

2

1

(表1)

堵車(chē)時(shí)間(單位:小時(shí))

頻數(shù)

8

6

38

24

24

(表2)

(1)求段平均堵車(chē)時(shí)間的值.

(2)若只考慮所花汽油費(fèi)期望值的大小,為了節(jié)約,求選擇走甲線(xiàn)路的概率.

(3)在(2)的條件下,某4名司機(jī)中走甲線(xiàn)路的人數(shù)記為X,求X的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊(cè)答案