精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=mx1 , g(x)=﹣1+logmx(m>0,m≠1),有如下兩個命題:
p:f(x)的定義域和g[f(x)]的值域相等.
q:g(x)的定義域和f[g(x)]的值域相等.
則(
A.命題p,q都正確
B.命題p正確,命題q不正確
C.命題p,q都不正確
D.命題q不正確,命題p正確

【答案】C
【解析】解:函數f(x)=mx1的定義域為R,值域為(0,+∞);
函數g[f(x)]=﹣1+logm(mx1)=x﹣2的定義域為R,值域為R,
g(x)的定義域為(0,+∞),值域為R;
函數f[g(x)]= = 的定義域為(0,+∞),值域為(0,+∞),
故p:f(x)的定義域和g[f(x)]的值域相等,不正確;
q:g(x)的定義域和f[g(x)]的值域相等,不正確;
故選:C
【考點精析】認真審題,首先需要了解命題的真假判斷與應用(兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下面給出了四個類比推理: (1.)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個向量則( = )”;
(2.)“a,b為實數,若a2+b2=0則a=b=0”類比推出“z1 , z2為復數,若 ”;
(3.)“在平面內,三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”;
(4.)“在平面內,過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”.
上述四個推理中,結論正確的個數有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓M過定點P(1,0),且與直線x=﹣1相切.
(1)求動圓圓心M的軌跡C的方程;
(2)設A、B是軌跡C上異于原點O的兩點,且 =0,求證:直線AB過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數,且f(2)= ,
(1)確定函數f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)= 是定義在區(qū)間(﹣1,1)上的奇函數,且f(2)= ,
(1)確定函數f(x)的解析式;
(2)用定義法證明f(x)在區(qū)間(﹣1,1)上是增函數;
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】【2017省息一中第七次適應性考已知函數),且的導數為.

(Ⅰ)若是定義域內的增函數,求實數的取值范圍;

(Ⅱ)若方程有3個不同的實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|ax2+bx+1=0}(a∈R,b∈R),集合B={﹣1,1}.
(1)若BA,求實數a的值;
(2)若A∩B≠,求a2﹣b2+2a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|x2﹣3x<0},B={x|(x+2)(4﹣x)≥0},C={x|a<x≤a+1}.
(1)求A∩B;
(2)若B∪C=B,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中, 分別為橢圓 的左、右焦點, 為短軸的一個端點, 是橢圓上的一點,滿足,且的周長為.

(1)求橢圓的方程;

(2)設點是線段上的一點,過點且與軸不垂直的直線交橢圓兩點,若是以為頂點的等腰三角形,求點到直線距離的取值范圍.

查看答案和解析>>

同步練習冊答案