15.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若bcosA+acosB=c2,且a=$\sqrt{3}$,b=$\sqrt{2}$,則cosB等于( 。
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{4}$

分析 由已知等式利用余弦定理可求c的值,進(jìn)而根據(jù)余弦定理即可得解cosB的值.

解答 解:∵bcosA+acosB=c2,且a=$\sqrt{3}$,b=$\sqrt{2}$,
∴由余弦定理可得:b×$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$+a×$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=c2,整理可得:c=1,
又∵a=$\sqrt{3}$,b=$\sqrt{2}$,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{3+1-2}{2×\sqrt{3}×1}$=$\frac{\sqrt{3}}{3}$.
故選:C.

點(diǎn)評(píng) 本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=|x+a|+|x-2|
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若不等式f(x)<2的解集為空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知兩組相關(guān)數(shù)據(jù)如表,其線性回歸方程為$\stackrel{∧}{y}$=x+$\frac{6}{5}$,則表中缺失的數(shù)據(jù)m=11.
 x 5 7 9 11 13
 y 6 8 m 12 14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)y=lnx-mx(m∈R)
(1)若函數(shù)y=f(x)過(guò)點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在銳角△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且$\frac{a}{sinA}=\frac{2c}{{\sqrt{3}}}$.
(1)確定角C的大。
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-lgx,x>1}\\{{x}^{3}-3x,x≤1}\end{array}\right.$.
(1)求函數(shù)f(x)的圖象在點(diǎn)(-3,f(-3))處的切線方程;
(2)若函數(shù)f(x)的圖象與直線y=m恰有2個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)為定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x+x-$\frac{1}{x}$.
(1)求f(-1)的值;
(2)求f(x)的解析式;
(3)若函數(shù)g(x)=f(x)+a在區(qū)間(1,2)上有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示,在直角梯形ABCD中,AB∥CD,AB⊥AD,AB=AD=$\frac{1}{2}$CD=1,現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點(diǎn).
(1)求證:AM∥平面BEC;
(2)若點(diǎn)P為線段BC的中點(diǎn),求直線PE與平面BDE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知:a>0,b>0,c>0,函數(shù)f(x)=|x+a|+|x-b|+c的最小值為5.
(1)求a+b+c的值;
(2)求$\frac{1}{3}$a2+$\frac{1}{4}$b2+$\frac{1}{5}$c2的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案