函數(shù)f(x)=(1+x)2-2ln(1+x)的單調(diào)增區(qū)間是
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求導(dǎo)數(shù)fˊ(x)然后在函數(shù)的定義域內(nèi)解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區(qū)間為單調(diào)增區(qū)間,fˊ(x)<0的區(qū)間為單調(diào)減區(qū)間.
解答: 解:由x+1>0,得:f(x)定義域為(-1,+∞),
f′(x)=
2x(x+2)
x+1
,
∵x>-1,∴x+1>0且x+2>0,
由f′(x)=0得x=0,
令f′(x)>0得x>0
∴增區(qū)間為(0,+∞).
故答案為:(0,+∞).
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4},B={1,2},則滿足A∩C=B∪C的集合C有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O為空間直角坐標系的原點,以下能使向量
OA
,
OB
OC
共面的三點A,B,C的坐標是( 。
A、A(1,0,0),B(0,1,0),C(0,0,1)
B、A(1,2,3),B(3,0,2),C(4,2,5)
C、A(1,1,0),B(1,0,1),C(0,1,1)
D、A(1,1,1),B(1,1,0),C(1,0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2ax-5(a>0且a≠1)在[-1,2]上的最大值為3
(1)求a的值;
(2)當(dāng)a>1時,求f(x)在(-∞,0)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且-1≤y≤1,則z=2x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-x-
x2
2
,a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ) 證明:(x-1)(e-x-x)+2lnx<
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知S是平行四邊形ABCD所在平面外一點,M,N分別是SA,BD上的點,MN=5,AB=AD=SB=SA=6,且
AM
SM
=
DN
NB
=
1
2

(1)求MN與BC所成的角的余弦值;
(2)求證:MN∥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-lnx在(1,+∞)內(nèi)單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(sinB,1-cosB),且與
n
=(1,0)的夾角為
π
3
,其中A,B,C是△ABC的內(nèi)角.
(1)求角B的大;
(2)求sinA+sinC的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案