分析 先求正方形的邊長(zhǎng),而圖中有三角形相似,利用相似三角形的對(duì)應(yīng)高之比等于相似比而求出正方形的邊長(zhǎng),最后利用基本不等式求出正方形面積的最大值.
解答 解:如圖,作AN⊥BC于N交GF與M,
∵四邊形GDEF是正方形
∴GF=GD=MN,GF∥BC
∴△AGF∽△ABC
∴$\frac{AM}{AN}$=$\frac{GF}{BC}$.
設(shè)正方形的邊長(zhǎng)為x.
∴$\frac{h-x}{h}$=$\frac{x}{a}$
解得x=$\frac{ah}{a+h}$.
由于三角形的面積為2,
∴ah=4,
∴x=$\frac{ah}{a+h}$=$\frac{4}{a+h}$≤$\frac{4}{2\sqrt{ah}}$=1,當(dāng)且僅當(dāng)a=h時(shí)取等號(hào),
∴△ABC的內(nèi)接正方形面積的最大值為12=1.
故答案為:1.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)以及基本不等式,重點(diǎn)是相似三角形的對(duì)應(yīng)高之比等于相似比的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②④ | C. | ①② | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | π+2 | C. | $\frac{π}{3}$+2$\sqrt{3}$ | D. | $\frac{4π}{3}$+2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{π}{3}$,$\frac{π}{3}$) | B. | (-$\frac{π}{3}$,$\frac{π}{6}$) | C. | (-$\frac{π}{2}$,$\frac{π}{6}$) | D. | (-$\frac{π}{2}$,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com