分析 (Ⅰ)根據(jù)函數(shù)的對(duì)稱軸得到-$\frac{2a}$=1,根據(jù)方程f(x)=2x有兩個(gè)相等實(shí)根,求出b的值,從而求出a的值,求出函數(shù)的表達(dá)式;
(Ⅱ)求出g(x)的解析式,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)在閉區(qū)間上的最值即可.
解答 解:(Ⅰ)二次函數(shù)f(x)=ax2+bx(a≠0,a,b為常數(shù))滿足f(1-x)=f(1+x),
故對(duì)稱軸x=-$\frac{2a}$=1①,
方程f(x)=2x有兩個(gè)相等實(shí)根,即ax2+(b-2)x=0有兩個(gè)相等實(shí)根,
故△=(b-2)2=0,解得:b=2,
將b=2代入①,解得:a=-1,
故f(x)=-x2+2x;
(Ⅱ)g(x)=$\frac{1}{3}$x3-x-f(x)=$\frac{1}{3}$x3+x2-3x,
g′(x)=x2+2x-3=(x+3)(x-1),
令g′(x)>0,解得:x>1或x<-3,
令g′(x)<0,解得:-3<x<1,
∴g(x)在(-∞,-3)遞增,在(-3,1)遞減,在(1,+∞)遞增,
∴g(x)在[0,1)遞減,在(1,3]遞增,
∴g(x)最小值=g(1)=-$\frac{5}{3}$,而g(0)=0,g(3)=9,故g(x)最大值=9.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及二次函數(shù)的性質(zhì),是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36π | B. | 48π | C. | 56π | D. | 64π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
氣溫x(度) | 18 | 13 | 10 | -1 |
用電量y(度) | 24 | 34 | 38 | 64 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{6}$ | C. | 2 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 恰好有1件次品和恰好有兩件次品 | B. | 至少有1件次品和全是次品 | ||
C. | 至少有1件次品和全是正品 | D. | 至少有1件正品和至少有1件次品 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com