【題目】已知函數(shù)的定義域為,若存在常數(shù),使得對任意的成立,則稱函數(shù)是“類周期函數(shù)”.
(1)判斷函數(shù),是否是“類周期函數(shù)”,并證明你的結(jié)論;
(2)求證:若函數(shù)是“類周期函數(shù)”,且是偶函數(shù),則是周期函數(shù);
(3)求證:當(dāng)時,函數(shù)一定是“類周期函數(shù)”.
【答案】(1)函數(shù)不是“類周期函數(shù)”, 是“類周期函數(shù)”,證明見解析(2)證明見解析(3)證明見解析
【解析】
(1)利用反證法可證斷函數(shù)不是“類周期函數(shù)”,當(dāng)時,利用定義可證是“類周期函數(shù)”;
(2)根據(jù),,,可推出,結(jié)論得證;
(3)由,即,也就是存在非零實根,可證得結(jié)論正確.
(1)函數(shù)不是“類周期函數(shù)”, 是“類周期函數(shù)”,
證明:假設(shè)函數(shù)是“類周期函數(shù)”,
則,即對任意的成立,
令得,所以,這與相矛盾,故假設(shè)不成立,
所以函數(shù)不是“類周期函數(shù)”;
因為時, ,根據(jù)定義可知是“類周期函數(shù)”.
(2)因為函數(shù)是“類周期函數(shù)”,
所以存在常數(shù),使得對任意的成立,
所以,
又為偶函數(shù),所以,
所以 ,
因為,所以,
又為偶函數(shù),所以,
所以,
所以,
因為,所以是周期為的周期函數(shù).
(3)當(dāng)時,假設(shè)函數(shù)是“類周期函數(shù)”,
則存在常數(shù),使得對任意的成立,
即存在常數(shù),使得對任意的成立,
所以,此方程有非零實數(shù)解,
故當(dāng)時,函數(shù)一定是“類周期函數(shù)”.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、中、國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機(jī)模擬的方法估計恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“中、國、美、麗”這四個字,以每三個隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 321 230 023 123 021 132 220 001
231 130 133 231 031 320 122 103 233
由此可以估計,恰好第三次就停止的概率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的左、右焦點分別是、,離心率,過點的直線交橢圓于、兩點, 的周長為16.
(1)求橢圓的方程;
(2)已知為原點,圓: ()與橢圓交于、兩點,點為橢圓上一動點,若直線、與軸分別交于、兩點,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某企業(yè)的兩座建筑物AB,CD的高度分別為20m和40m,其底部BD之間距離為20m.為響應(yīng)創(chuàng)建文明城市號召,進(jìn)行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設(shè)備,投影到建筑物CD上形成投影幕墻,既達(dá)到亮化目的又可以進(jìn)行廣告宣傳.已知投影設(shè)備的投影張角∠EAF為,投影幕墻的高度EF越小,投影的圖像越清晰.設(shè)投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EF為y(m).
(1)求y關(guān)于α的函數(shù)關(guān)系式,并求出定義域;
(2)當(dāng)投影的圖像最清晰時,求幕墻EF的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足時按計算)需再收5元.公司從承攬過的包裹中,隨機(jī)抽取100件,其重量統(tǒng)計如下:
包裹重量(單位:) | |||||
包裹件數(shù) | 43 | 30 | 15 | 8 | 4 |
公司又隨機(jī)抽取了60天的攬件數(shù),得到頻數(shù)分布表如下:
攬件數(shù) | |||||
天數(shù) | 6 | 6 | 30 | 12 | 6 |
以記錄的60天的攬件數(shù)的頻率作為各攬件數(shù)發(fā)生的概率
(1)計算該公司3天中恰有2天攬件數(shù)在的概率;
(2)估計該公司對每件包裹收取的快遞費的平均值;
(3)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用做其他費用,目前前臺有工作人員3人,每人每天攬件不超過150件,每人每天工資100元,公司正在考慮是否將前臺工作人員裁減1人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤有利?
(注:同一組中的攬件數(shù)以這組數(shù)據(jù)所在區(qū)間中點值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從一張半徑為3的圓形鐵皮中裁剪出一塊扇形鐵皮(如圖1陰影部分),并卷成一個深度為米的圓錐筒(如圖2).若所裁剪的扇形鐵皮的圓心角為.
(1)求圓錐筒的容積;
(2)在(1)中的圓錐內(nèi)有一個底面圓半徑為的內(nèi)接圓柱(如圖3),求內(nèi)接圓柱側(cè)面積最大時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求在點P(1,)處的切線方程;
(2)若關(guān)于x的不等式有且僅有三個整數(shù)解,求實數(shù)t的取值范圍;
(3)若存在兩個正實數(shù),滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列中,依次是某等差數(shù)列的第5項、第3項、第2項,且,公比
(1)求;
(2)設(shè),求數(shù)列的前項和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓兩焦點分別為是橢圓在第一象限弧上一點,并滿足,過P作傾斜角互補的兩條直線分別交橢圓于兩點.
(1)求點坐標(biāo);
(2)求證:直線的斜率為定值;
(3)求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com