4.將長寬分別為2和1的長方形ABCD沿對角線AC折起,得到四面體A-BCD,則四面體A-BCD外接球的表面積為( 。
A.B.C.10πD.20π

分析 折疊后的四面體的外接球的半徑,就是長方形ABCD沿對角線AC的一半,求出球的半徑即可求出球的表面積.

解答 解:由題意可知,直角三角形斜邊的中線是斜邊的一半,
所以長寬分別為2和1的長方形ABCD沿對角線AC折起二面角,得到四面體A-BCD,
則四面體A-BCD的外接球的球心O為AC中點(diǎn),半徑$R=\frac{{\sqrt{5}}}{2}$,
所求四面體A-BCD的外接球的表面積為4π×($\frac{\sqrt{5}}{2}$)2=5π.
故選B.

點(diǎn)評 本題主要考查幾何體的外接球的相關(guān)知識,考查空間想象能力,計(jì)算能力,求出球的半徑,是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的是( 。
A.y=cosxB.$y={x^{\frac{1}{2}}}$C.y=2|x|D.y=|lgx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$({\frac{π}{8},0})$是函數(shù)f(x)=sinωx+cosωx圖象的一個(gè)對稱中心,則ω的取值可以是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i是虛數(shù)單位,則滿足z-i=|1+2i|的復(fù)數(shù)z在復(fù)平面上對應(yīng)點(diǎn)所在的象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,已知△ABC中,D為BC上一點(diǎn),∠DAC=$\frac{π}{4}$,cos∠BDA=-$\frac{3}{5}$,AC=4$\sqrt{2}$.
( I)求AD的長;
( II)若△ABD的面積為14,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知隨機(jī)變量X服從正態(tài)分布N(3,σ2),且P(X<5)=0.8,則P(1<X<3)=0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{2i}{1+i}$,則z•$\overline z$=(  )
A.2B.2iC.4D.4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若a,b∈R,ab≠0,且a+b=1,則下列不等式中,恒成立的是( 。
A.a2b2≤$\frac{1}{16}$B.a2+b2≥$\frac{1}{2}$C.(1+$\frac{1}{a}$)(1+$\frac{1}$)≥9D.$\frac{1}{a}$+$\frac{1}$≥4

查看答案和解析>>

同步練習(xí)冊答案