【題目】已知雙曲線(xiàn)C:4x2﹣y2=4及直線(xiàn)l:y=kx﹣1
(1)求雙曲線(xiàn)C的漸近線(xiàn)方程及離心率;
(2)直線(xiàn)l與雙曲線(xiàn)C左右兩支各有一個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:將雙曲線(xiàn)C:4x2﹣y2=4,化為標(biāo)準(zhǔn)方程得 ,可知焦點(diǎn)在x軸上,
則a=1,b=2,c= = ,
∴雙曲線(xiàn)的漸近線(xiàn)方程為y=± x=±2x,
離心率為e= =
(2)解:由直線(xiàn)l:y=kx﹣1,直線(xiàn)l與雙曲線(xiàn)C相交于A,B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2),
則 ,消去y,整理得:(4﹣k2)x2+2kx﹣5=0,
由韋達(dá)定理可知:x1x2=﹣
直線(xiàn)l與雙曲線(xiàn)C左右兩支各有一個(gè)公共點(diǎn),
,
解得:k2<5,且k2<4,
∴﹣2<k<2,
∴實(shí)數(shù)k的取值范圍是(﹣2,2)
【解析】(1)由題意可知: ,可知焦點(diǎn)在x軸上,則a=1,b=2,c= = ,漸近線(xiàn)方程為y=± x=±2x,離心率為e= = ;(2)將直線(xiàn)方程代入橢圓方程,由韋達(dá)定理可知:x1x2=﹣ ,直線(xiàn)l與雙曲線(xiàn)C左右兩支各有一個(gè)公共點(diǎn), ,即可求得k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線(xiàn)與直線(xiàn)相切,求實(shí)數(shù)的值;
(2)記,求在上的最大值;
(3)當(dāng)時(shí),試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線(xiàn)l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線(xiàn)l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線(xiàn)l的距離為 ,若存在,求出c的范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)C:y2=8x的焦點(diǎn)為F,過(guò)F作傾斜角為60°的直線(xiàn)l.
(1)求直線(xiàn)l的方程;
(2)求直線(xiàn)l被拋物線(xiàn)C所截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4tanxsin( ﹣x)cos(x﹣ )﹣ .
(1)求f(x)的定義域與最小正周期;
(2)討論f(x)在區(qū)間[﹣ , ]上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知{an}是等差數(shù)列,其中a1=25,a4=16
(1)求{an}的通項(xiàng);
(2)求a1+a3+a5+…+a19值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A是函數(shù)y=lg(6+5x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集.p:x∈A,q:x∈B.
(1)若A∩B=,求a的取值范圍;
(2)若¬p是q的充分不必要條件,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在五面體中, , , ,平面平面.
(1)證明:直線(xiàn)平面;
(2)已知為棱上的點(diǎn),試確定點(diǎn)位置,使二面角的大小為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com