【題目】某廠商調(diào)查甲乙兩種不同型號(hào)汽車在10個(gè)不同地區(qū)賣場(chǎng)的銷售量(單位:臺(tái)),并根據(jù)這10個(gè)賣場(chǎng)的銷售情況,得到如圖所示的莖葉圖,為了鼓勵(lì)賣場(chǎng),在同型號(hào)汽車的銷售中,該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)的“星級(jí)賣場(chǎng)”.

(Ⅰ)求在這10個(gè)賣場(chǎng)中,甲型號(hào)汽車的“星級(jí)賣場(chǎng)”的個(gè)數(shù);

(Ⅱ)若在這10個(gè)賣場(chǎng)中,乙型號(hào)汽車銷售量的平均數(shù)為26.7,求的概率;

(Ⅲ)若,記乙型號(hào)汽車銷售量的方差為,根據(jù)莖葉圖推斷為何值時(shí),達(dá)到最小值(只寫出結(jié)論).

注:方差,其中,,…,的平均數(shù).

【答案】15

2

3

【解析】

(Ⅰ)根據(jù)莖葉圖,代入即可求得甲型號(hào)汽車的平均值,即可求得“星級(jí)賣場(chǎng)”的個(gè)數(shù);

(Ⅱ)根據(jù)乙組數(shù)據(jù)的平均值,可代入求得.由古典概型概率,列舉出所有可能,即可求得符合的概率.

(Ⅲ)當(dāng)時(shí),由方差公式可知,當(dāng)的值越小,其方差值越小,時(shí)方差取得最小值.

1)根據(jù)莖葉圖得到甲組數(shù)據(jù)的平均值:

.

該廠商將銷售量高于數(shù)據(jù)平均數(shù)的賣場(chǎng)命名為該型號(hào)的“星級(jí)賣場(chǎng)”,

在這10個(gè)賣場(chǎng)中,甲型號(hào)汽車的“星級(jí)賣場(chǎng)”的個(gè)數(shù)為5個(gè).

2)記事件為“”,乙組數(shù)據(jù)的平均值:

,

,

和取值共9種,分別為:,,,,,,,,,其的有4種,

的概率.

3)由題意可知當(dāng)的值越小,其方差值越小

所以時(shí),達(dá)到最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)名同學(xué),每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)m來(lái)估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是那么可以估計(jì)______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4-4 坐標(biāo)系與參數(shù)方程) 以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,設(shè)曲線C的參數(shù)方程為 (是參數(shù)),直線的極坐標(biāo)方程為.

1)求直線的直角坐標(biāo)方程和曲線C的普通方程;

2)設(shè)點(diǎn)P為曲線C上任意一點(diǎn),求點(diǎn)P到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在上單調(diào)遞增的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)上的單調(diào)性;

2)若存在兩個(gè)極值點(diǎn),記作,若,求a的取值范圍;

3)求證:當(dāng)時(shí),(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知A、BC是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,.

)求橢圓E的方程;

)設(shè)是以原點(diǎn)為圓心,短軸長(zhǎng)為半徑的圓,過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M,N,若直線MNx軸、y軸上的截距分別為m,n,試計(jì)算的值是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解我校高2017級(jí)本部和大學(xué)城校區(qū)的學(xué)生是否愿意參加自主招生培訓(xùn)的情況,對(duì)全年級(jí)2000名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果如下表:

區(qū)

愿意參加

愿意參加

重慶一中本部校區(qū)

220

980

重慶一中大學(xué)城校區(qū)

80

720

1從愿意參加自主招生培訓(xùn)的同學(xué)中按分層抽樣的方法抽取15人,則大學(xué)城校區(qū)應(yīng)抽取幾人;

2現(xiàn)對(duì)愿意參加自主招生的同學(xué)組織摸底考試,考試題共有5道題,每題20分,對(duì)于這5道題,考生“如花姐”完全會(huì)答的有3題,不完全會(huì)的有2道,不完全會(huì)的每道題她得分概率滿足:,假設(shè)解答各題之間沒(méi)有影響,

①對(duì)于一道不完全會(huì)的題,求“如花姐”得分的均值;

②試求“如花姐”在本次摸底考試中總得分的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5分)《九章算術(shù)》竹九節(jié)問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )

A. 1B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,若,.

1)證明:當(dāng)時(shí),;

2)求數(shù)列的通項(xiàng)公式;

3)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案