與拋物線相切傾斜角為的直線軸和軸的交點分別是A和B,那么過A、B兩點的最小圓截拋物線的準線所得的弦長為
A.4                B.2            C.2            D. 

C

解析試題分析:設直線AB:y=-x+b,與拋物線聯(lián)立得到判別式為零,即可知,則直線AB:y=-x-2,然后得到點A(-2,0),B(0,-2),則以AB為直徑的圓(x+2)x+(y+2)y=2,而拋物線的準線方程為x=-2,則利用直線與圓的位置關系可知,相交所得的弦長為2,故選C.
考點:直線與拋物線的位置關系
點評:解決的關鍵是求解得到拋物線的切線方程,然后分別求解以AB為直徑的圓與拋物線準線的相交的弦長,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

過雙曲線的左焦點,作圓的切線,切點為, 直線交雙曲線右支于點,若,則雙曲線的離心率為        (    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知直線與平面平行,P是直線上的一點,平面內(nèi)的動點B滿足:PB與直線 。那么B點軌跡是

A.雙曲線B.橢圓C.拋物線D.兩直線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

拋物線的焦點為,點在此拋物線上,且,弦的中點在該拋物線準線上的射影為,則的最大值為(    )

A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設F1、F2是雙曲線的兩個焦點,P在雙曲線上,且滿足∠F1PF2=90°,則△PF1F2的面積是(    )

A.1 B. C.2 D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

經(jīng)過點,并且對稱軸都在坐標軸上的等軸雙曲線的方程為(   )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

若方程C:是常數(shù))則下列結論正確的是(  )

A.,方程C表示橢圓B.,方程C表示雙曲線
C.,方程C表示橢圓D.,方程C表示拋物線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

拋物線的準線方程為,則實數(shù)(   )

A.4 B. C.2 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

方程表示雙曲線,則的取值范圍是

A. B.
C. D.

查看答案和解析>>

同步練習冊答案