Processing math: 39%
16.已知圓C的半徑為1,圓心C(a,2a-4),(其中a>0),點O(0,0),A(0,3)
(1)若圓C關(guān)于直線x-y-3=0對稱,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點P,使|PA|=|2PO|,求圓心C的橫坐標a的取值范圍.

分析 (1)先求出圓心坐標,可得圓的方程,再設(shè)出切線方程,利用點到直線的距離公式,即可求得切線方程;
(2)設(shè)出點C,P的坐標,利用|PA|=|2PO|,尋找坐標之間的關(guān)系,進一步將問題轉(zhuǎn)化為圓與圓的位置關(guān)系,即可得出結(jié)論.

解答 解:(1)由題設(shè)知,圓心C(a,2a-4)在直x-y-3=0上,解得點C(1,-2)
所以 圓C的方程為(x-1)2+(y+2)2=1…(2分)
①若切線的斜率不存在,則切線方程x=0,符合題意…(4分)
②若切線斜率存在,設(shè)切線的方程為y-3=k(x-0),即kx-y+3=0.
由題意知,圓心C(1,-2)到切線kx-y+3=0的距離等于半徑1,
即:|k+2+3|1+k2=1解之得k=125,所以切線方程為12x+5y-15=0…(6分)
綜上所述,所求切線的方程是x=0或 12x+5y-15=0…(7分)
(2)∵圓心C(a,2a-4),半徑為1,所以圓C的方程為(x-a)2+(y-2a+4)2=1.
設(shè)點P(x0,y0),因為|PA|=2|PO|∴x02+yo32=4x02+y02
化簡得x02+y02+12=4,又因為x0a2+y02a+42=1…(9分)
所以點P既在以D(0,-1)為圓心,2為半徑的圓上.
又在圓C上,即圓C與圓D有公共點P
則1≤CD≤3即1a2+2a323
{5a212a05a212a+80
由5a2-12a≤0,且a>0得0a125
由5a2-12a+8≥0,得a∈R;
所以圓心C的橫坐標a的取值范圍為0125]….(12分)

點評 本題考查直線與圓的位置關(guān)系,考查圓與圓的位置關(guān)系,考查學(xué)生的計算能力,考查分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=sin2x-23sin2x+23
(Ⅰ)當(dāng)x∈[-\frac{π}{3},\frac{π}{6}]時,求f(x)的取值范圍;
(Ⅱ)已知銳角三角形ABC滿足f(A)=\sqrt{3},且sinB=\frac{3}{5},b=2,求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“α=30°”是“sinα=\frac{1}{2}”的( �。�
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若直線ax+by=r2與圓x2+y2=r2沒有公共點,則點P(a,b)與圓的位置關(guān)系是( �。�
A.在圓上B.在圓內(nèi)C.在圓外D.以上皆有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在直三棱柱ABC-A1B1C1中,三角形ABC為等腰直角三角形,AC=BC=\sqrt{2},AA1=1,點D是AB的中點.
(1)求證:AC1∥平面CDB1;
(2)二面角B1-CD-B的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線y=x2+1在點P(-1,2)處的切線方程為( �。�
A.y=-x+3B.y=-2x+4C.y=-x+1D.y=-2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=mx3+nx(x∈R).若函數(shù)f(x)的圖象在點x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在[-2,3]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在四邊形ABCD中,\overrightarrow{AB}=(2,-2),\overrightarrow{BC}=(x,y),\overrightarrow{CD}=(1,\frac{7}{2}).
(1)若\overrightarrow{BC}\overrightarrow{DA},求x,y之間的關(guān)系式;
(2)滿足(1)的同時又有\overrightarrow{AC}\overrightarrow{BD},求x,y的值以及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知a{\;}^{\frac{1}{2}}=\frac{4}{9}(a>0),則log{\;}_{\frac{2}{3}}a=4.

查看答案和解析>>

同步練習(xí)冊答案