如圖,已知OPQ是半徑為1,圓心角為的扇形.C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,當(dāng)角α取何值時,矩形ABCD的面積最大?最大面積是多少?

答案:
解析:

  在Rt△OBC中,

  OB=cosα,BC=sinα.

  在Rt△OAD中,

  =tan

  所以O(shè)A=DA=BC=sinα.

  所以AB=OB-OA=cosαsinα.

  設(shè)矩形ABCD的面積為S,則

  S=AB·BC=(cosαsinα)·sinα

 。絪inα·cosαsin2α

  =sin2α-(1-cos2α)

 。sin2α+cos2α-

 。(sin2α+cos2α)-

 。sin(2α+)-

  由于0<α<

  所以當(dāng)2α+,

  即α=時,Smax

  因此,當(dāng)α=時,矩形ABCD的面積最大,最大面積為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知OPQ是半徑為1,圓心角為
π3
的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,求當(dāng)角α取何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知OPQ是半徑為1,圓心角為60°的扇形,∠POQ的平分線交弧PQ于點(diǎn)E,扇形POQ的內(nèi)接矩形ABCD關(guān)于OE對稱;設(shè)∠POB=α,矩形ABCD的面積為S.
(1)求S與α的函數(shù)關(guān)系f(α);
(2)求S=f(α)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知OPQ是半徑為為1,圓心角為
π3
的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,矩形ABCD的面積為S.
(1)請找出S與α之間的函數(shù)關(guān)系(以α為自變量);
(2)求當(dāng)α為何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知OPQ是半徑為1,圓心角為數(shù)學(xué)公式的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,求當(dāng)角α取何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省孝感市英才高中高一(下)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知OPQ是半徑為1,圓心角為的扇形,C是扇形弧上的動點(diǎn),ABCD是扇形的內(nèi)接矩形.記∠COP=α,求當(dāng)角α取何值時,矩形ABCD的面積最大?并求出這個最大面積.

查看答案和解析>>

同步練習(xí)冊答案