(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長時,求|AB|.

依題意,圓M的圓心,圓N的圓心,故,由橢圓定理可知,曲線C是以M、N為左右焦點(diǎn)的橢圓(左頂點(diǎn)除外),其方程為;
(2)對于曲線C上任意一點(diǎn),由于(R為圓P的半徑),所以R=2,所以當(dāng)圓P的半徑最長時,其方程為;
若直線l垂直于x軸,易得
若直線l不垂直于x軸,設(shè)l與x軸的交點(diǎn)為Q,則,解得,故直線l:;有l(wèi)與圓M相切得,解得;當(dāng)時,直線,聯(lián)立直線與橢圓的方程解得;同理,當(dāng)時,.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦點(diǎn)構(gòu)成的三角形的面積為,直線l的方程為: 
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l與橢圓相交于、兩點(diǎn)
①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;
②已知點(diǎn),求證:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,橢圓的短軸端點(diǎn)與雙曲線的焦點(diǎn)重合,過點(diǎn)且不垂直于軸直線與橢圓相交于、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,動點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線C,直線過點(diǎn)且與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)是否存在△AOB面積的最大值,若存在,求出△AOB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓正半軸、正半軸的交點(diǎn)分別為,動點(diǎn)是橢圓上任一點(diǎn),求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:,離心率為,焦點(diǎn)的直線交橢圓于兩點(diǎn),且的周長為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m0),與橢圓C交于相異兩點(diǎn)A,B且.若,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的左焦點(diǎn)為,離心率為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為.
(1) 求橢圓方程.
(2) 過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),當(dāng)面積最大時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:  (a>b>0)的兩個焦點(diǎn)和短軸的兩個端點(diǎn)都在圓上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時,三角形OAB為直角三角形.

查看答案和解析>>

同步練習(xí)冊答案