在平面直角坐標(biāo)系xOy中,已知AB是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的不平行于對稱軸的弦,M為AB的中點(diǎn),記OM,AB的斜率分別為kOM,kAB,則kOM•kAB=-
b2
a2

(1)類比橢圓的上述性質(zhì),給出一個(gè)在雙曲線中也成立的性質(zhì);
(2)證明(1)中的結(jié)論.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)類比橢圓的性質(zhì),直接敘述.
(2)設(shè)A(x1,y1),A(x1,y1),M(x0,y0)利用點(diǎn)差法能證明kOM•kAB=
b2
a2
解答: (1)解:在平面直角坐標(biāo)系xOy中,已知AB是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的不平行于對稱軸的弦,M為AB的中點(diǎn),記OM,AB的斜率分別為kOM,kAB,則kOM•kAB=
b2
a2
.…(4分)
(2)證明:設(shè)A(x1,y1),A(x1,y1),M(x0,y0
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1
,得:
x12-x22
a2
-
y12-y22
b2
=0
,(6分)
(x1+x2)(x1-x2)
a2
-
(y1+y2)(y1-y2)
b2
=0,
∵M(jìn)(x0,y0)為AB的中點(diǎn)
∴x1+x2=2x0,y1+y2=2y0,(9分)
2x0(x1-x2)
a2
-
2y0(y1-y2)
b2
=0,
∴kAB=
y1-y2
x1-x2
=
b2 x0
a2y0
,(11分)
∵kOM=
y0
x0
,(13分)
∴kOM•kAB=
b2
a2
.(16分)
點(diǎn)評:本題考查雙曲線性質(zhì)的類比敘述,考查兩直線的斜率乘積為定值的證明,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

“病毒X”已經(jīng)擴(kuò)散,威脅著人類.某兩個(gè)大國的研究所A、B獨(dú)立地研究“病毒X”疫苗,研究所A、B研制成功的概率分別為
1
3
1
4
,且他們是否研制成功互不影響.
(Ⅰ)求疫苗研制成功的概率;
(Ⅱ)若資源共享,則提高了效率,且他們研制成功的概率比獨(dú)立地研究時(shí)至少有一個(gè)研制成功的概率提高了50%.又疫苗研制成功可獲得經(jīng)濟(jì)效益a萬元,而資源共享時(shí)所得的經(jīng)濟(jì)效益只能兩個(gè)研究所平均分配.請你給A研究所參謀:是否應(yīng)該采用與B研究所合作的方式來研究疫苗,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y均為實(shí)數(shù),a=x2-1,b=
3
2
-x+y2,求證:a,b中至少有一個(gè)大于0.(要求反證法證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是正方形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=1,點(diǎn)E在PD上,且PE:ED=2:1.
(1)求二面角D-AC-E的余弦值;
(2)在棱PC上是否存在一點(diǎn)F,使得BF∥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱中ABC-A1B1C1,CA=CB,AB=AA1,∠BAA1=60°,點(diǎn)M和N分別為線段A1B1和CC1上的點(diǎn),且A1M=2MB1,MN∥平面A1BC.求證:
(1)AB⊥A1C;
(2)CN=2NC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點(diǎn),AB=BC=2,過A1,C1,B三點(diǎn)的平面截去長方體的一個(gè)角后.得到如圖所示的幾何體ABCD-A1B1C1D1,且這個(gè)幾何體的體積為
40
3

(1)求證:EF∥平面A1B1C1;
(2)求A1A的長;
(3)在線段BC1上是否存在點(diǎn)P,使直線A1P與C1D垂直,如果存在,求線段A1P的長,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ω是正實(shí)數(shù),函數(shù)f(x)=4cosωx•sin(ωx+
π
4
)的最小正周期是π.
(Ⅰ)求ω的值;
(Ⅱ)若函數(shù)y=f(x)在區(qū)間[0,a]內(nèi)有且僅有2個(gè)零點(diǎn),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三角形ABC中,AB=AC,點(diǎn)P為線段AB上一點(diǎn),且
AP
AB

(Ⅰ)若
CP
=
3
4
CA
+
1
4
CB
,求λ的值;
(Ⅱ)若∠A=120°,且
CP
AB
>4
AP
PB
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
1
2
AP=2,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將三角形PCD沿CD折起,使得PD垂直平面ABCD.
(Ⅰ)若F是PD的中點(diǎn),求證:AP∥平面EFG;
(Ⅱ)當(dāng)二面角G-EF-D的大小為
π
4
時(shí),求FG與平面PBC所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案