已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點(diǎn)F1的坐標(biāo)為(-1,0),已知橢圓E上的一點(diǎn)到F1、F2兩點(diǎn)的距離之和為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過(guò)橢圓E的右焦點(diǎn)F2作一條傾斜角為
π
4
的直線交橢圓于C、D,求△CDF1的面積;
(Ⅲ)設(shè)點(diǎn)P(4,t)(t≠0),A、B分別是橢圓的左、右頂點(diǎn),若直線AP、BP分別與橢圓相交異于A、B的點(diǎn)M、N,求證∠MBP為銳角.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專(zhuān)題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)根據(jù)左焦點(diǎn)F1的坐標(biāo)為(-1,0),橢圓E上的一點(diǎn)到F1、F2兩點(diǎn)的距離之和為4,求出求橢圓E的方程;
(Ⅱ)直線CD方程為y=x-1,將直線方程代入橢圓方程,求出|CD|,點(diǎn)F1到直線CD的距離,可求△CDF1的面積;
(Ⅲ)根據(jù)P、A、M三點(diǎn)共線,可得kPA=kMA
t
6
=
y0
x0+2
⇒t=
6y0
x0+2
,再利用向量的數(shù)量積公式,即可得出結(jié)論.
解答: 解:(Ⅰ)由題設(shè)知:2a=4,即a=2,∴c2=1,b2=3
故橢圓方程為
x2
4
+
y2
3
=1
,…(3分)
(Ⅱ)由已知得直線CD方程為y=x-1,將直線方程帶入橢圓方程得:7x2-8x-8=0…(4分)
設(shè)點(diǎn)C(x1y1),D(x2,y2),x1+x2=
8
7
,x1x2=-
8
7
…(5分)
|CD|=
1+12
(x1+x2)2-4x1x2
=
2
(
8
7
)
2
+4•
8
7
…(7分)
點(diǎn)F1到直線CD的距離是d=
|-1-1|
2
=
2
…(8分)
所以S△CDF1=
1
2
|CD|d=
12
7
2
…(9分)
(Ⅲ)A(-2,0),B(2,0).
設(shè)M(x0,y0),則-2<x0<2
因?yàn)辄c(diǎn)M在橢圓上,所以
y
2
0
=
3
4
(4-
x
2
0
)
…(10分)
因?yàn)镻、A、M三點(diǎn)共線,所以kPA=kMA
t
6
=
y0
x0+2
⇒t=
6y0
x0+2
…(11分)
所以
BM
=(x0-2,y0),
BP
=(2,
6y0
x0+2
)

所以
BM
BP
=
5
2
(2-x0)>0…(13分)
所以∠MBP為銳角…(14分)
點(diǎn)評(píng):本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,考查向量知識(shí)的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)g(x)=f(x)-
1
2
[f(1)+f(3)],若a>0且f(x-1)=f(-x-1),g(x)在區(qū)間[-2,2]上最大值為-1,求g(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=asinx+bcosx+c(a,b,c為常數(shù))的圖象過(guò)原點(diǎn),且對(duì)任意x∈R總有f(x)≤f(
π
3
)
成立;
(1)若f(x)的最大值等于1,求f(x)的解析式;
(2)試比較f(
b
a
)
f(
c
a
)
的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根為x1,x2,求|x1-x2|和
x1+x2
2
+x13x23的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-
a
2
x2e|x|

(Ⅰ)若f(x)是[0,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)證明:當(dāng)a≥1時(shí),證明不等式f(x)≤x+1對(duì)x∈R恒成立;
(Ⅲ)對(duì)于在(0,1)中的任一個(gè)常數(shù)a,試探究是否存在x0>0,使得f(x0)>x0+1成立?如果存在,請(qǐng)求出符合條件的一個(gè)x0;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市為了解社區(qū)群眾體育活動(dòng)的開(kāi)展情況,擬采用分層抽樣的方法從A,B,C三個(gè)行政區(qū)中抽出6個(gè)社區(qū)進(jìn)行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個(gè)社區(qū).
(Ⅰ)求從A,B,C三個(gè)行政區(qū)中分別抽取的社區(qū)個(gè)數(shù);
(Ⅱ)若從抽得的6個(gè)社區(qū)中隨機(jī)的抽取2個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求抽取的2個(gè)社區(qū)中至少有一個(gè)來(lái)自A行政區(qū)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)與
b
(1,y)共線,設(shè)函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知△ABC中的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,若銳角A滿足f(A-
π
3
)=
3
,且a=7,sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)O,左右焦點(diǎn)分別為F1,F(xiàn)2的橢圓的離心率為
6
3
,焦距為2
2
,A,B是橢圓上兩點(diǎn).
(1)若直線AB與以原點(diǎn)為圓心的圓相切,且OA⊥OB,求此圓的方程;
(2)動(dòng)點(diǎn)P滿足:
OP
=
OA
+3
OB
,直線OA與OB的斜率的乘積為-
1
3
,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于不等式組
2x-3y+2≥0
3x-y-4≤0
x+2y+1≥0
的解(x,y),當(dāng)且僅當(dāng)
x=2
y=2
時(shí),z=ax+y取得最大值,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案