已知二次函數(shù)f(x)=ax2+bx+c,函數(shù)g(x)=f(x)-
1
2
[f(1)+f(3)],若a>0且f(x-1)=f(-x-1),g(x)在區(qū)間[-2,2]上最大值為-1,求g(x)的表達(dá)式.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知中a>0且f(x-1)=f(-x-1),可得函數(shù)f(x),g(x)的圖象關(guān)于直線x=-
b
2a
=-1對稱;結(jié)合g(x)在區(qū)間[-2,2]上最大值為-1,構(gòu)造方程求出a,b值,代入可得g(x)的表達(dá)式.
解答: 解:∵二次函數(shù)f(x)=ax2+bx+c滿足f(x-1)=f(-x-1),
故函數(shù)f(x),g(x)的圖象關(guān)于直線x=-
b
2a
=-1對稱,即b=2a,
又∵a>0,
故在區(qū)間[-2,2]上,
當(dāng)x=2,g(x)max=f(2)-
1
2
[f(1)+f(3)]=4a+2b+c-
1
2
[(a+b+c)+(9a+3b+c)]=-a=-1
解得a=1,b=2
∴f(x)=x2+2x+c,
∴f(1)=3+c,f(3)=15+c,
∴g(x)=f(x)-
1
2
[f(1)+f(3)]
=x2+2x+c-
1
2
(3+c+15+c)
=x2+2x-9,
即g(x)=x2+2x-9.
點評:本題考查的知識點是二次函數(shù)的性質(zhì),其中根據(jù)已知分析出函數(shù)的對稱性,進(jìn)而構(gòu)造關(guān)于a,b的方程是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C的離心率e=
5
3
,一條準(zhǔn)線方程為
5
x-9=0,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若以k(k>0)為斜率的直線l與橢圓C相交于兩個不同的點M,N,且線段MN的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為
25
74
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(x+3)(x-1)6的展開式中,x4的系數(shù)是
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)同時具有以下兩個性質(zhì):①f(x)是偶函數(shù),②對任意實數(shù)x,都有f(
π
4
+x)=f(
π
4
-x),則f(x)的解析式可以是(  )
A、f(x)=cosx
B、f(x)=cos(2x+
π
2
C、f(x)=sin(4x+
π
2
D、f(x)=cos6x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個算法的程序框圖如圖所示,如果輸入的x的值為2014,則輸出的i的結(jié)果為( 。
A、3B、5C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)和g(x)都是定義在同一區(qū)間上的兩個函數(shù),若對任意x∈[1,2],都有|f(x)+g(x)|≤8,則稱f(x)和g(x)是“友好函數(shù)”,設(shè)f(x)=ax,g(x)=
b
x

(1)若a∈{1,4},b∈{-1,1,4},求f(x)和g(x)是“友好函數(shù)”的概率;
(2)若a∈{1,4},b∈{1,4},求f(x)和g(x)是“友好函數(shù)”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C經(jīng)過點A(0,2),B(
1
2
3
).
(Ⅰ)求橢圓C的方程.
(Ⅱ)設(shè)P(x0,y0)為橢圓C上的動點,求x20+2y0的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

指出函數(shù)f(x)=
3x2
3x-2
(x>
2
3
)的單調(diào)區(qū)間,并求出函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦點F1的坐標(biāo)為(-1,0),已知橢圓E上的一點到F1、F2兩點的距離之和為4.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過橢圓E的右焦點F2作一條傾斜角為
π
4
的直線交橢圓于C、D,求△CDF1的面積;
(Ⅲ)設(shè)點P(4,t)(t≠0),A、B分別是橢圓的左、右頂點,若直線AP、BP分別與橢圓相交異于A、B的點M、N,求證∠MBP為銳角.

查看答案和解析>>

同步練習(xí)冊答案