已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并求的值.

(1)根據(jù)等比數(shù)列的定義,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d7/c/xwwhb1.png" style="vertical-align:middle;" />,進(jìn)而得到證明。
(2),
(3)1

解析試題分析:(1)證明:由已知
 兩邊取對數(shù)得,即
是公比為2的等比數(shù)列。
(2)解:由(1)知


= 
(3)



又  
考點(diǎn):數(shù)列的遞推關(guān)系式以及數(shù)列的求和
點(diǎn)評:主要是考查了數(shù)列的概念以及數(shù)列求和的綜合運(yùn)用,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列項(xiàng)和,數(shù)列滿足),
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:當(dāng)時(shí),數(shù)列為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為,若數(shù)列中只有最小,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列.
(1)若,,求數(shù)列的前項(xiàng)和;
(2)若存在正整數(shù),使得.試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在圖中,,(),

(1)求數(shù)列的通項(xiàng)
(2)求數(shù)列的前項(xiàng)和;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,對于任意,等式:恒成立,其中常數(shù)
(1)求的值;         (2)求證:數(shù)列為等比數(shù)列;
(3)如果關(guān)于的不等式的解集為,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,求其第4項(xiàng)及前5項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

,是方程的兩根, 數(shù)列是公差為正的等差數(shù)列,數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記=,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)如圖,9個(gè)正數(shù)排列成3行3列,其中每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,且所有的公比都是,已知又設(shè)第一行數(shù)列的公差為.

(Ⅰ)求出 ;
(Ⅱ)若保持這9個(gè)數(shù)的位置不動,按照上述規(guī)律,補(bǔ)成一個(gè)n行n列的數(shù)表如下,試寫出數(shù)表第n行第n列的表達(dá)式,并求的值.

查看答案和解析>>

同步練習(xí)冊答案