【題目】已知,.

(1)若對任意的實數(shù),恒有,求實數(shù)的取值范圍;

(2)當時,求證:方程恒有兩解.

【答案】();()詳見解析

【解析】試題分析:轉(zhuǎn)化為關(guān)于的二次不等式,進而得,令,利用導數(shù)求解函數(shù)的單調(diào)性與最值,即可求解實數(shù)的取值范圍;

Ⅱ)方程化為,令,利用導數(shù)求得函數(shù)的單調(diào)性與最值,得到各有一個零點,即可得方程恒有兩解.

試題解析:

Ⅰ)要使f(x)<g(x)恒成立,即使成立,

整理成關(guān)于a的二次不等式

只要保證△<0,    

,

整理為, 。╥)  

下面探究(i)式成立的條件,令,,,當時,,單調(diào)遞減;當時,,單調(diào)遞增,x=1有最小值,,,

實數(shù)b 的取值范圍是(-1,2). 

Ⅱ)方程化為,

, 

在(0,+∞)上單調(diào)遞增,,,

存在使,即,上單調(diào)遞減,在上單調(diào)遞增, 處取得最小值. 

,<0, 

,,各有一個零點,故方程恒有兩解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,每次抽獎都是從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出一個球,在摸出的2個球中,若都是紅球,則獲得一等獎;若只有1個紅球,則獲得二等獎;若沒有紅球,則不獲獎.

(1)求顧客抽獎1次能獲獎的概率;

(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中或一等獎的次數(shù)為,求的分布列、數(shù)學期望和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心為坐標原點、焦點在坐標軸上的橢圓經(jīng)過點和點,直線與橢圓交于不同的,兩點.

1)求橢圓的標準方程;

2)若橢圓上存在點,使得四邊形恰好為平行四邊形,求直線與坐標軸圍成的三角形面積的最小值以及此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體上任意選擇個頂點,然后將它們兩兩相連,則可能組成的幾何圖形為_________(寫出所有正確結(jié)論的編號).

①矩形;②不是矩形的平行四邊形;③有三個面為等腰直角三角形,有一個面為等邊三角形的四面體;④每個面都是等邊三角形的四面體;⑤每個面都是直角三角形的四面體.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在多面體中,,四邊形為矩形,四邊形為直角梯形,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是橢圓 的四個頂點,菱形的面積與其內(nèi)切圓面積分別為, .橢圓的內(nèi)接的重心(三條中線的交點)為坐標原點.

(1)求橢圓的方程;

(2) 的面積是否為定值?若是,求出該定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,為雙曲線的左、右焦點,過的直線與圓相切于點,且,則雙曲線的離心率為( )

A. B. 2 C. 3 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知平面平面平面,且位于之間.點,,,,.

1)求證:.

2)設(shè)ADCF不平行,且A,BC,D為定點,間的距離為,間的距離為h.當的值是多少時,的面積最大?

查看答案和解析>>

同步練習冊答案