已知A,B是平面區(qū)域
2x-y-4≤0
x-2y+4≥0
x+y-2≥0
內(nèi)的兩個動點,向量
n
=(3,-2),則向量
AB
n
的最大值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:根據(jù)題意作出可行域,平移向量,利用向量在
n
上的投影判斷AB兩點的位置,即可得到結(jié)論.
解答: 解:平面區(qū)域
2x-y-4≤0
x-2y+4≥0
x+y-2≥0
的可行域為:平行
n
至可行域的P,
由可行域可知,向量
AB
n
的最大值是就是
PN
n
上的投影取得最大值.
2x-y-4=0
x+y-2=0
可得N(2,0),
此時
AB
n
=
PN
n
=3×2-2×0=6.
故答案為:6.
點評:本題考查線性規(guī)劃、向量的坐標表示、平面向量數(shù)量積的運算等基礎(chǔ)知識,考查數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題中是假命題的是( 。
A、?a,b∈R+,1g(a+b)≠1ga+1gb
B、?φ∈R,使得函數(shù)f(x)=sin(2x+φ)是偶函數(shù)
C、?α,β∈R,使得sin(α+β)=sinα+sinβ
D、?m∈R,使f(x)=(m-1)•x m2-4m+3是冪函數(shù),且在(0,+∞)上遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=2sinωxcosωx-2cos2ωx(x∈R,ω>0),相鄰兩對稱軸距離為
π
2
,求:
(1)f(
π
4
);
(2)x∈[0,
π
2
],f(x)單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線x-y+1=0被圓x2+y2-2x-2=0截得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一正方形的兩頂點為雙曲線C的兩焦點,若另外兩個項點在雙曲線C上,則雙曲線C的離心率e=( 。
A、
5
+1
2
B、
2
2
+1
2
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校園有一橢圓型花壇,分成如圖四塊種花,現(xiàn)有4種不同顏色的花可供選擇,要求每塊地只能種一種顏色,且有公共邊界的兩塊不能種同一種顏色,則不同的種植方法共有( 。
A、48種B、36種
C、30種D、24種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極點與直角坐標系的原點重合,極軸與x軸非負半軸重合,曲線C的極坐標方程為ρ=2sinθ,直線l的參數(shù)方程為
x=t
y=2+
3
t
(t為參數(shù)),直線l與曲線C交于A、B,則 線段AB的長等于( 。
A、
1
2
B、
3
2
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x為實數(shù),則函數(shù)y=x2+3x-5的最小值為( 。
A、-
29
4
B、-5
C、0
D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
(ω>0),其相鄰兩個最值點的橫坐標之差為2π.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c滿足tanB=
3
ac
a2+c2-b2
且B為銳角,求函數(shù)f(A)的值域.

查看答案和解析>>

同步練習冊答案