若x為實(shí)數(shù),則函數(shù)y=x2+3x-5的最小值為( 。
A、-
29
4
B、-5
C、0
D、不存在
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:把二次函數(shù)轉(zhuǎn)化為頂點(diǎn)式形式,然后根據(jù)二次函數(shù)的最值問(wèn)題解答即可.
解答: 解:y=x2+3x-5
=(x+
3
2
2-
29
4
-
29
4

∵a=1>0,
∴二次函數(shù)有最小值,最小值為-
29
4

故選:A.
點(diǎn)評(píng):本題考查了二次函數(shù)的最值問(wèn)題,把函數(shù)解析式轉(zhuǎn)化為頂點(diǎn)式形式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某設(shè)計(jì)運(yùn)動(dòng)員在一次測(cè)試中射擊10次,其測(cè)試成績(jī)?nèi)绫恚簞t該運(yùn)動(dòng)員測(cè)試成績(jī)的中位數(shù)為( 。
環(huán)數(shù)78910
頻數(shù)3223
A、2B、8C、8.5D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A,B是平面區(qū)域
2x-y-4≤0
x-2y+4≥0
x+y-2≥0
內(nèi)的兩個(gè)動(dòng)點(diǎn),向量
n
=(3,-2),則向量
AB
n
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列命題中:
①函數(shù)f(x)=x+
a
x
(x>0)的最小值為2
a
;
②已知定義在R上周期為4的函數(shù)f(x)滿(mǎn)足f(2-x)=f(2+x),則f(x)一定為偶函數(shù);
③定義在R上的函數(shù)f(x)既是奇函數(shù)又是以2為周期的周期函數(shù),則f(1)+f(4)+f(7)=0;
④已知函數(shù)f(x)=ax3+bx2+cx+d(d≠0),則a+b+c=0是f(x)有極值的必要不充分條件;
⑤已知函數(shù)f(x)=x-sinx,若a+b>0,則f(a)+f(b)>0.
其中正確命題的序號(hào)為
 
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)l:3x+y-6=0和圓心為C的圓x2+y2-2y-4=0相交于A,B兩點(diǎn),則線(xiàn)段AB的長(zhǎng)度等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,曲線(xiàn)C的參數(shù)方程為
x=2cosθ
y=sinθ
,直線(xiàn)l的極坐標(biāo)方程為ρsin(θ-
π
4
)=
2
,則直線(xiàn)l與曲線(xiàn)C的交點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列式子:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)以上式子可猜想:13+23+33+…+n3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中,正確的有
 
 (把所有正確的序號(hào)都填上).
①“?x∈R,使2x>3“的否定是“?x∈R,使2x≤3”;
②函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f'(x0)=0”的否命題是真命題;
④函數(shù)f(x)=2x-x2的零點(diǎn)有2個(gè);
1
-1
1-x2
dx等于
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案