奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,f(1)=2,則f(3)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性、周期性即可得出.
解答: 解:∵奇函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,f(1)=2,
∴f(3)=f(-1)=-f(1)=-2.
故答案為:-2.
點(diǎn)評:本題考查了函數(shù)的奇偶性、周期性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+x-6y+m=0和直線l:x+y-3=0
(Ⅰ)求m的取值范圍;
(Ⅱ)當(dāng)圓C與直線l相切時(shí),求圓C關(guān)于直線l的對稱圓方程;
(Ⅲ)若圓C與直線l交于P、Q兩點(diǎn),是否存在m,使以PQ為直徑的圓經(jīng)過原點(diǎn)O?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是(-∞,+∞)上的偶函數(shù),f(x+2)=f(x),當(dāng)0≤x≤1時(shí),f(x)=x2+1,則f(-5)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義min{a,b,c}為三數(shù)中最小的數(shù),若f(x)=min{4x+1,x+2,-2x+4},畫出函數(shù)f(x)的圖象并求出值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-1(x∈R),給出下列四個(gè)命題( 。
①若f(x1)=-f(x2),則x1=-x2;
②f(x)的最小正周期是2π;
③f(x)在區(qū)間[-
π
4
π
4
]上是增函數(shù);
④f(x)的圖象關(guān)于直線x=
4
對稱,
其中正確的命題是( 。
A、①②④B、①③C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+ax+1,x≥1
ax2+x+1,x<1
,則“-
1
2
≤a≤0”是“f(x)在R上單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+a(x+lnx),x>0,a∈R是常數(shù).
(1)求函數(shù)y=f(x)的圖象在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)圖象上的點(diǎn)都在第一象限,試求常數(shù)a的取值范圍;
(3)證明:?a∈R,存在ξ∈(1,e),使f′(ξ)=
f(e)-f(1)
e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=(m2-m-1)x m2-2m-3在區(qū)間x∈(0,+∞)上為減函數(shù),則m的值為( 。
A、2B、-1
C、2或-1D、-2或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時(shí),xf′(x)<f(-x)成立,若a=
3
f(
3
)
,b=(lg3)f(lg3),c=(log2
1
4
)f(log2
1
4
),則a,b,c的大小關(guān)系是(  )
A、c<b<a
B、c<a<b
C、a<b<c
D、a<c<b

查看答案和解析>>

同步練習(xí)冊答案