【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過(guò)),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;

(2)該種植基地在如圖所示的長(zhǎng)方形地塊的每個(gè)格點(diǎn)(橫縱直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的面積都為,現(xiàn)從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的平均數(shù).

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:.

【答案】(1)(2)

【解析】

1)計(jì)算出,,代入求出系數(shù),求出回歸方程即可;(2)代入的值,求出的預(yù)報(bào)值,求平均數(shù)即可.

解:(1)由題意得:

,

,

所以,

,

所以.

(2)由回歸方程得:

當(dāng)時(shí),,

當(dāng)時(shí),,

當(dāng)時(shí),,

故平均數(shù)為:.

所以一株產(chǎn)量的平均數(shù)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的面積為,且與軸、軸分別交于兩點(diǎn).

1)求圓的方程;

(2)若直線與線段相交,求實(shí)數(shù)的取值范圍;

(3)試討論直線與(1)小題所求圓的交點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,棱長(zhǎng)為2,M,N分別為A1BAC的中點(diǎn).

(1)證明:MN//B1C;

(2)求A1B與平面A1B1CD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,的中點(diǎn),將沿直線翻折成,連結(jié)的中點(diǎn),則在翻折過(guò)程中,下列說(shuō)法中所有正確的序號(hào)是_______.

①存在某個(gè)位置,使得

②翻折過(guò)程中,的長(zhǎng)是定值;

③若,則;

④若,當(dāng)三棱錐的體積最大時(shí),三棱錐的外接球的表面積是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果種植基地引進(jìn)一種新水果品種,經(jīng)研究發(fā)現(xiàn)該水果每株的產(chǎn)量(單位:)和與它“相近”的株數(shù)具有線性相關(guān)關(guān)系(兩株作物“相近”是指它們的直線距離不超過(guò)),并分別記錄了相近株數(shù)為0,1,2,3,4時(shí)每株產(chǎn)量的相關(guān)數(shù)據(jù)如下:

0

1

2

3

4

15

12

11

9

8

(1)求出該種水果每株的產(chǎn)量關(guān)于它“相近”株數(shù)的回歸方程;

(2)有一種植戶準(zhǔn)備種植該種水果500株,且每株與它“相近”的株數(shù)都為,計(jì)劃收獲后能全部售出,價(jià)格為10元,如果收入(收入=產(chǎn)量×價(jià)格)不低于25000元,則的最大值是多少?

(3)該種植基地在如圖所示的直角梯形地塊的每個(gè)交叉點(diǎn)(直線的交點(diǎn))處都種了一株該種水果,其中每個(gè)小正方形的邊長(zhǎng)和直角三角形的直角邊長(zhǎng)都為,已知該梯形地塊周邊無(wú)其他樹(shù)木影響,若從所種的該水果中隨機(jī)選取一株,試根據(jù)(1)中的回歸方程,預(yù)測(cè)它的產(chǎn)量的分布列與數(shù)學(xué)期望.

附:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知圓過(guò)點(diǎn),且與直線相切于點(diǎn),求圓的方程;

2)已知圓軸相切,圓心在直線上,且圓被直線截得的弦長(zhǎng)為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(多選題)設(shè)正實(shí)數(shù)滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓與圓相切,并且橢圓上動(dòng)點(diǎn)與圓上動(dòng)點(diǎn)間距離最大值為.

1)求橢圓的方程;

2)過(guò)點(diǎn)作兩條互相垂直的直線交于兩點(diǎn),與圓的另一交點(diǎn)為,求面積的最大值,并求取得最大值時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切,圓心在軸上,且直線被圓截得的弦長(zhǎng)為

1)求圓的方程;

2)過(guò)點(diǎn)作斜率為的直線與圓交于兩點(diǎn),若直線的斜率乘積為,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案