如圖,一張平行四邊形的硬紙片中,,.沿它的對角線折起,使點到達平面外點的位置.

(Ⅰ)證明:平面平面;

(Ⅱ)當二面角時,求的長。

解:(Ⅰ)證明:因為,

,所以

   因為折疊過程中,,

   所以,又,故平面

   又平面

   所以平面平面

(Ⅱ)解法一:如圖,由(Ⅰ)知,,

   所以是二面角的平面角.由已知得,

   作,垂足為

   由

   可得,

   連結(jié),在中,

   

   因為平面平面,

   所以平面,可知

   在中,

   解法二:由已知得.以為原點,射線,分別為,軸的正半軸,

建立如圖所示的空間直角坐標系.則,,

由(Ⅰ)知,,所以為二面角的平面角.

   由已知可得

   所以

   所以,

   即的長為2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,一張平行四邊形的硬紙片ABC0D中,AD=BD=1,AB=
2
.沿它的對角線BD把△BDC0折起,使點C0到達平面ABC0D外點C的位置.
(Ⅰ)證明:平面ABC0D⊥平面CBC0;
(Ⅱ)如果△ABC為等腰三角形,求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一張平行四邊形的硬紙片ABC0D中,AD=BD=1,AB=
2
.沿它的對角線BD把△BDC0折起,使點C0到達平面ABC0D外點C的位置.
(Ⅰ)△BDC0折起的過程中,判斷平面ABC0D與平面CBC0的位置關系,并給出證明;
(Ⅱ)當△ABC為等腰三角形,求此時二面角A-BD-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆度湖南省高三下學期二輪復習理科數(shù)學試卷 題型:解答題

如圖,一張平行四邊形的硬紙片中,,。沿它的對角線把△折起,使點到達平面外點的位置。

(Ⅰ)△折起的過程中,判斷平面與平面的位置關系,并給出證明;

(Ⅱ)當△為等腰三角形,求此時二面角的大小。

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:河北省2009-2010學年度第二學期二調(diào)考試高一年級數(shù)學試卷理科 題型:解答題

(本小題共12分)如圖,一張平行四邊形的硬紙片中,,。沿它的對角線把△折起,使點到達平面外點的位置。

(Ⅰ)證明:平面平面

(Ⅱ)如果△為等腰三角形,求二面角的大小。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一張平行四邊形的硬紙片中,,.沿它的對角線折起,使點到達平面外點的位置.

(Ⅰ)證明:平面平面;

(Ⅱ)當二面角時,求的長

查看答案和解析>>

同步練習冊答案