分析 (1)假設(shè)存在a1使得數(shù)列{an}是常數(shù)列,解方程a1=$\frac{1}{1-{a}_{1}}$即可;
(2)通過an+1=$\frac{1}{1-{a}_{n}}$計(jì)算出前幾項(xiàng)的值即得結(jié)論;
(3)通過a1=2及(2)可知a2=-1,a3=$\frac{1}{2}$,進(jìn)而a1•a2•a3=-1,利用2014=671×3+1計(jì)算即得結(jié)論.
解答 (1)解:不存在a1,使得數(shù)列{an}是常數(shù)列.
理由如下:
假設(shè)存在a1,使得數(shù)列{an}是常數(shù)列,
則a1=$\frac{1}{1-{a}_{1}}$,
化簡得:${{a}_{1}}^{2}$-a1+1=0,
顯然該方程無解,
∴不存在a1,使得數(shù)列{an}是常數(shù)列;
(2)證明:依題意,a2=$\frac{1}{1-{a}_{1}}$,
a3=$\frac{1}{1-{a}_{2}}$=$\frac{1}{1-\frac{1}{1-{a}_{1}}}$=$\frac{{a}_{1}-1}{{a}_{1}}$,
a4=$\frac{1}{1-{a}_{3}}$=$\frac{1}{1-\frac{{a}_{1}-1}{{a}_{1}}}$=a1,
∴數(shù)列{an}是以3為周期的周期數(shù)列;
(3)解:若a1=2,由(2)可知a2=$\frac{1}{1-{a}_{1}}$=-1,a3=$\frac{{a}_{1}-1}{{a}_{1}}$=$\frac{1}{2}$,
∴a1•a2•a3=2•(-1)•$\frac{1}{2}$=-1,
∵2014=671×3+1,
∴a2014=a1=2,S2014=(-1)671•(-2)=2.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③④ | B. | ①②④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com