16.已知一個(gè)圓臺(tái)的上、下底面半徑分別為2cm,4cm,高為6cm,則圓臺(tái)的體積為56π.

分析 直接把已知代入圓臺(tái)體積公式求解.

解答 解:設(shè)圓臺(tái)的上、下底面半徑分別為r,R,高為h,則r=2cm,R=4cm,h=6cm.
∴圓臺(tái)的體積V=$\frac{1}{3}πh({r}^{2}+rR+{R}^{2})=\frac{1}{3}π×6({2}^{2}+2×4+{4}^{2})$=56π.
故答案為:56π.

點(diǎn)評(píng) 本題考查圓臺(tái)體積的求法,關(guān)鍵是熟記圓臺(tái)體積公式,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.樣本容量為1000的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[6,14)內(nèi)的頻數(shù)為680.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若二次函數(shù)f(x)的圖象經(jīng)過點(diǎn)(4,3),其在x軸上截得的線段長為2,并且對(duì)任意的x∈R,都有f(2-x)=f(x+2).
(1)求f(x)的解析式.
(2)若不等式f(x)>2x+m在x∈[-1,1]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列說法正確的是( 。
A.圓錐的母線長等于底面圓直徑B.圓柱的母線與軸垂直
C.圓臺(tái)的母線與軸平行D.球的直徑必過球心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知a,b>0,a+2b=1,則t=$\frac{1}{a}$+$\frac{1}$的最小值是( 。
A.3+2$\sqrt{2}$B.3-2$\sqrt{2}$C.1+2$\sqrt{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)y=f(x)的定義域?yàn)閧x|x∈R,且x≠0},且滿足f(x)-f(-x)=0,當(dāng)x>0時(shí),f(x)=lnx-x+1,則函數(shù)y=f(x)的大致圖象為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若等邊三角形ABC的邊長為2,N為AB的中點(diǎn),且AB上一點(diǎn)M滿足$\overrightarrow{CM}$=x$\overrightarrow{CA}$+y$\overrightarrow{CB}$,則當(dāng)$\frac{1}{x}$+$\frac{4}{y}$取最小值時(shí),$\overrightarrow{CM}$•$\overrightarrow{CN}$=( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=λcos2(ωx+$\frac{π}{6}$)-3(λ>0,ω>0)的最大值為2,最小正周期為$\frac{2π}{3}$.
(1)求函數(shù)y=f(x)的解析式;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow a=(2,1),\overrightarrow b=(3,m)$,若向量$(2\overrightarrow a-\overrightarrow b)$與向量$\overrightarrow b$共線,則$|{\overrightarrow b}|$=( 。
A.$\frac{{3\sqrt{5}}}{2}$B.$3\sqrt{5}$C.$\frac{{3\sqrt{7}}}{2}$D.$3\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案