已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)判斷集合{1,2,3,4}是否具有性質(zhì)P;
(II)求證:
1
a1
-
1
an
n-1
25
;
(III)求證:n≤9.
分析:(Ⅰ)利用性質(zhì)對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25
.代入可判斷
(Ⅱ)依題意有 |ai-ai+1|≥
aiai+1
25
(i=1,2,,n-1)
,又a1<a2<…<an,因此 ai+1-ai
aiai+1
25
(i=1,2,,n-1)
.由此能夠證明
1
a1
-
1
an
n-1
25

(III)由
1
a1
n-1
25
,a≥1可得 1>
n-1
25
,因此n<26.同理
1
ai
-
1
an
n-i
25
,可知
1
ai
n-i
25
.由此能夠推導(dǎo)出n≤9.
解答:解:(I)由于|1-2|≥
1×2
25
,|1-3|≥
1×3
25
,|1-4|≥
1×4
25
|2-3|≥
2×3
25
,|2-4|≥
2×4
25
|3-4|≥
3×4
25
,
∴集合{1,2,3,4}具有性質(zhì)P;
(Ⅱ)依題意有 |ai-ai+1|≥
aiai+1
25
(i=1,2,,n-1)
,又a1<a2<…<an
因此 ai+1-ai
aiai+1
25
(i=1,2,,n-1)
,
可得
1
ai
-
1
ai+1
1
25
(i=1,2,,n-1)
;
所以
1
a1
-
1
a2
+
1
a2
-
1
a3
+
1
ai
-
1
ai+1
++
1
an-1
-
1
an
n-1
25
,即
1
a1
-
1
an
n-1
25

(III)由
1
a1
n-1
25
,a≥1可得 1>
n-1
25
,因此n<26,
同理
1
ai
-
1
an
n-i
25
,可知
1
ai
n-i
25
.又ai≥i,可得
1
i
n-i
25
所以i(n-i)<25(i=1,2,,n-1)均成立.
當(dāng)n≥10時(shí),取i=5,則i(n-i)=5(n-5)≥25,可知n<10.
又當(dāng)n≤9時(shí),i(n-i)≤(
i+n-i
2
)
2
=(
n
2
)
2
<25
,所以n≤9.
點(diǎn)評:本題考查數(shù)列的性質(zhì)的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意公式的合理運(yùn)用,合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對于n=9,試給出一個(gè)滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對于n=11,試給出一個(gè)滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個(gè)數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當(dāng)n=108時(shí),l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案