設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,點(diǎn)F1、F2為其左、右焦點(diǎn),直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R)
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離.
考點(diǎn):參數(shù)方程化成普通方程
專題:選作題,坐標(biāo)系和參數(shù)方程
分析:(1)消去參數(shù),可得直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)P(2cosθ,
3
sinθ),則d=
|
7
sin(θ-θ0)+2|
2
,即可求曲線C上的動(dòng)點(diǎn)P到直線l的最大距離.
解答: 解:(1)直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R),普通方程為x-y-2=0;
曲線C的極坐標(biāo)方程為ρ2=
12
3cos2θ+4sin2θ
,直角坐標(biāo)方程為
x2
4
+
y2
3
=1

(2)設(shè)P(2cosθ,
3
sinθ),則d=
|
7
sin(θ-θ0)+2|
2
,
∴θ-θ0=
π
2
,即P(-
4
7
7
,
3
7
7
)時(shí),曲線C上的動(dòng)點(diǎn)P到直線l的最大距離為
14
2
+
2
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,以及利用平面幾何知識(shí)解決最值問(wèn)題.利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖①,一條寬為1km的兩平行河岸有三個(gè)工廠A、B、C,工廠B與A、C的直線距離都是2km,BC與河岸垂直,D為垂足.現(xiàn)要在河岸AD上修建一個(gè)供電站,并計(jì)劃鋪設(shè)地下電纜和水下電纜,從供電站向三個(gè)工廠供電.已知鋪設(shè)地下電纜、水下電纜的費(fèi)用分別為2萬(wàn)元/km、4萬(wàn)元/km.
(Ⅰ)已知工廠A與B之間原來(lái)鋪設(shè)有舊電纜(原線路不變),經(jīng)改造后仍可使用,舊電纜的改造費(fèi)用是0.5萬(wàn)元/km.現(xiàn)決定將供電站建在點(diǎn)D處,并通過(guò)改造舊電纜修建供電線路,試求該方案總施工費(fèi)用的最小值;
(Ⅱ)如圖②,已知供電站建在河岸AD的點(diǎn)E處,且決定鋪設(shè)電纜的線路為CE、EA、EB,若∠DCE=θ(0≤θ≤
π
3
),試用θ表示出總施工費(fèi)用y(萬(wàn)元)的解析式,并求總施工費(fèi)用y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)是正整數(shù)指數(shù)函數(shù)的是(  )
A、y=(1-
2
x(x∈N)
B、y=2x2(x∈N)
C、y=(a-3)x(a>3,且x∈N)
D、y=(
3
-1)(x∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|(x2+ax+b)(x-1)=0},集合B滿足條件:A∩B={1,2},A∩(∁UB)={3},U=R,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明:若集合M={(x,y)|x+y=0},N={(x,y)|x2+y2=0},則有M∪N=M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x+2|+|2x-1|
(Ⅰ)求函數(shù)y=f(x)的最小值;
(Ⅱ)若f(x)≥mx-
m
2
+
5
2
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為(  )
A、y=3-x2
B、y=
ex-e-x
2
C、y=log2|x|
D、y=x3+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα
(α為參數(shù)),則曲線C上的一個(gè)動(dòng)點(diǎn)Q到直線l的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一水平放置的平面圖形,用斜二測(cè)畫(huà)法畫(huà)出了它的直觀圖,此直觀圖恰好是一個(gè)邊長(zhǎng)為2的正方形,如圖則原平面圖形的面積為( 。
A、2
B、3
C、8
D、8
2

查看答案和解析>>

同步練習(xí)冊(cè)答案